Foundations of Artificial Intelligence

12. State-Space Search: Depth-first Search & Iterative Deepening

Malte Helmert

Universität Basel

March 14, 2016

State-Space Search: Overview

Chapter overview: state-space search

- 5.-7. Foundations
- 8.–12. Basic Algorithms
 - 8. Data Structures for Search Algorithms
 - 9. Tree Search and Graph Search
 - 10. Breadth-first Search
 - 11. Uniform Cost Search
 - 12. Depth-first Search and Iterative Deepening
- 13.-19. Heuristic Algorithms

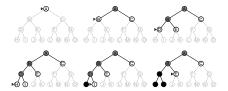
Depth-first Search

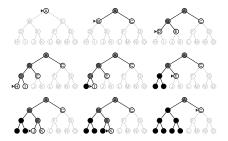
Depth-first Search

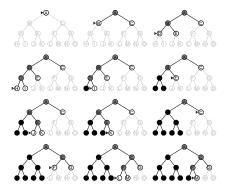
Depth-first search (DFS) expands nodes in opposite order of generation (LIFO).

- → open list implemented as stack

German: Tiefensuche







Depth-first Search

- almost always implemented as a tree search (we will see why)
- not complete, not semi-complete, not optimal (Why?)
- complete for acyclic state spaces,
 e.g., if state space directed tree

Reminder: Generic Tree Search Algorithm

reminder from Chapter 9:

Generic Tree Search

```
open := \mathbf{new} \ \mathsf{OpenList}
open.\mathsf{insert}(\mathsf{make\_root\_node}())
\mathbf{while} \ \mathbf{not} \ open.\mathsf{is\_empty}():
n := open.\mathsf{pop}()
\mathbf{if} \ \mathsf{is\_goal}(n.\mathsf{state}):
\mathbf{return} \ \mathsf{extract\_path}(n)
\mathbf{for} \ \mathbf{each} \ \langle a,s' \rangle \in \mathsf{succ}(n.\mathsf{state}):
n' := \mathsf{make\_node}(n,a,s')
open.\mathsf{insert}(n')
\mathbf{return} \ \mathsf{unsolvable}
```

Depth-first Search (Non-recursive Version)

depth-first search (non-recursive version):

Depth-first Search (Non-recursive Version)

```
open := \mathbf{new Stack}
open.\mathbf{push\_back}(\mathsf{make\_root\_node}())
\mathbf{while \ not \ } open.\mathbf{is\_empty}():
n := open.\mathbf{pop\_back}()
\mathbf{if \ is\_goal}(n.\mathsf{state}):
\mathbf{return \ } extract\_\mathsf{path}(n)
\mathbf{for \ each} \ \langle a,s' \rangle \in \mathsf{succ}(n.\mathsf{state}):
n' := \mathsf{make\_node}(n,a,s')
open.\mathbf{push\_back}(n')
\mathbf{return \ } unsolvable
```

Non-recursive Depth-first Search: Discussion

discussion:

- there isn't much wrong with this pseudo-code
 (as long as we ensure to release nodes that are no longer required
 when using programming languages without garbage collection)
- however, depth-first search as a recursive algorithm is simpler and more efficient
- → CPU stack as implicit open list
- → no search node data structure needed

Depth-first Search (Recursive Version)

main function:

Depth-first Search (Recursive Version)

return depth_first_search(init())

Depth-first Search: Complexity

time complexity:

- If the state space includes paths of length m, depth-first search can generate $O(b^m)$ nodes, even if much shorter solutions (e.g., of length 1) exist.
- On the other hand: in the best case, solutions of length ℓ can be found with $O(b\ell)$ generated nodes. (Why?)
- improvable to $O(\ell)$ with incremental successor generation

Depth-first Search: Complexity

time complexity:

- If the state space includes paths of length m, depth-first search can generate $O(b^m)$ nodes, even if much shorter solutions (e.g., of length 1) exist.
- On the other hand: in the best case, solutions of length ℓ can be found with $O(b\ell)$ generated nodes. (Why?)
- ullet improvable to $O(\ell)$ with incremental successor generation

space complexity:

- only need to store nodes along currently explored path ("along": nodes on path and their children)
- \rightarrow space complexity O(bm) if m maximal search depth reached
 - low memory complexity main reason why depth-first search interesting despite its disadvantages

Iterative Deepening

Depth-limited Search

depth-limited search:

- depth-first search which prunes (does not expand)
 all nodes at a given depth d
- → not very useful on its own, but important ingredient
 of more useful algorithms

German: tiefenbeschränkte Suche

Depth-limited Search: Pseudo-Code

function depth_limited_search(s, depth_limit):

```
 \begin{array}{l} \textbf{if is\_goal}(s): \\ \textbf{return } \langle \rangle \\ \textbf{if } \textit{depth\_limit} > 0: \\ \textbf{for each } \langle a, s' \rangle \in \mathsf{succ}(s): \\ \textit{solution} := \mathsf{depth\_limited\_search}(s', \textit{depth\_limit} - 1) \\ \textbf{if } \textit{solution} \neq \textbf{none}: \\ \textit{solution}. \texttt{push\_front}(a) \\ \textbf{return solution} \\ \end{array}
```

Iterative Deepening Depth-first Search

iterative deepening depth-first search (iterative deepening DFS):

- idea: perform a sequence of depth-limited searches with increasing depth limit
- sounds wasteful (each iteration repeats all the useful work of all previous iterations)
- in fact overhead acceptable (→ analysis follows)

Iterative Deepening DFS

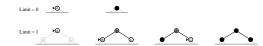
```
\label{eq:for depth_limit} \begin{split} & \textit{for depth\_limit} \in \{0,1,2,\dots\}: \\ & \textit{solution} := \mathsf{depth\_limited\_search(init())}, \textit{depth\_limit}) \\ & \textit{if solution} \neq \textit{none}: \\ & \textit{return solution} \end{split}
```

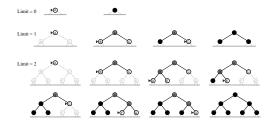
German: iterative Tiefensuche

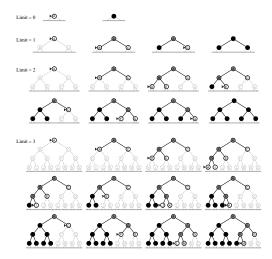
Iterative Deepening DFS: Properties

combines advantages of breadth-first and depth-first search:

- (almost) like BFS: semi-complete (however, not complete)
- like BFS: optimal if all actions have same cost
- like DFS: only need to store nodes along one path
 → space complexity O(bd), where d minimal solution length
- time complexity only slightly higher than BFS (→ analysis soon)







Iterative Deepening DFS: Complexity Example

time complexity (generated nodes):

breadth-first search	$1+b+b^2+\cdots+b^{d-1}+b^d$
iterative deepening DFS	$(d+1)+db+(d-1)b^2+\cdots+2b^{d-1}+1b^d$

example: b = 10, d = 5

breadth-first search	1+10+100+1000+10000+100000			
	= 111111			
iterative deepening DFS	6+50+400+3000+20000+100000			
	= 123456			

for b=10, only 11% more nodes than breadth-first search

Iterative Deepening DFS: Time Complexity

Theorem (time complextive of iterative deepening DFS)

Let b be the branching factor and d be the minimal solution length of the given state space. Let $b \ge 2$.

Then the time complexity of iterative deepening DFS is

$$(d+1)+db+(d-1)b^2+(d-2)b^3+\cdots+1b^d=O(b^d)$$

and the memory complexity is

O(bd).

Iterative Deepening DFS: Evaluation

Iterative Deepening DFS: Evaluation

Iterative Deepening DFS is often the method of choice if

- tree search is adequate (no duplicate elimination necessary),
- all action costs are identical, and
- the solution depth is unknown.

Summary

Summary

depth-first search: expand nodes in LIFO order

- usually as a tree search
- easy to implement recursively
- very memory-efficient
- can be combined with iterative deepening to combine many of the good aspects of breadth-first and depth-first search

Comparison of Blind Search Algorithms

completeness, optimality, time and space complexity

	search algorithm					
criterion	breadth-	uniform	depth-	depth-	iterative	
	first	cost	first	limited	deepening	
complete?	yes*	yes	no	no	semi	
optimal?	yes**	yes	no	no	yes**	
time	$O(b^d)$	$O(b^{\lfloor c^*/\varepsilon \rfloor + 1})$	$O(b^m)$	$O(b^\ell)$	$O(b^d)$	
space	$O(b^d)$	$O(b^{\lfloor c^*/\varepsilon \rfloor + 1})$	O(bm)	$O(b\ell)$	O(bd)	

- $b \ge 2$ branching factor
 - d minimal solution depth
 - m maximal search depth
 - ℓ depth limit
 - c* optimal solution cost
- $\varepsilon > 0$ minimal action cost

remarks:

- * for BFS-Tree: semi-complete
- ** only with uniform action costs