Übungsklausur FS 2015

Theorie der Informatik (10948-01) Übungsklausur FS 2015

Prof. Dr. Malte Helmert Gabriele Röger Universität Basel Departement Mathematik und Informatik

Name:	
T	
Immatrikulationsnummer:	

- Die Klausur besteht aus einem Multiple-Choice-Teil und 6 weiteren Aufgaben.
- Bitte schreiben Sie Ihren Namen und Ihre Immatrikulationsnummer auf dieses Titelblatt.
- Als Hilfsmittel ist ein von Ihnen vorbereitetes A4-Blatt (beidseitig beschrieben) erlaubt. Weitere Hilfsmittel wie Vorlesungsfolien, Skripte, Bücher, weitere Notizen oder Taschenrechner sind nicht erlaubt. Des Weiteren sind alle elektronischen Geräte (wie z.B. Mobiltelefone) auszuschalten.
- Für die Bearbeitung der Aufgaben haben Sie 105 Minuten Zeit.
- Benutzen Sie zur Bearbeitung der Aufgaben jeweils den Platz unterhalb der Aufgaben sowie falls nötig den Platz auf der Rückseite.
- Falls Sie mehrere Lösungsansätze einer Aufgabe erarbeiten, markieren Sie deutlich, welcher gewertet werden soll.

	Erreichbare Punkte	Erzielte Punkte
Multiple-Choice-Fragen	20	
Aufgabe 1	10	
Aufgabe 2	10	
Aufgabe 3	10	
Aufgabe 4	10	
Aufgabe 5	10	
Aufgabe 6	10	
Gesamt	80	
Note	(1,0-6,0)	

Multiple-Choice-Fragen (10×2 Punkte)

(a)	Welche der folgenden Behauptungen zu aussagenlogischen Formeln sind wahr?
	\square Ist φ erfüllbar, dann ist $\neg \varphi$ unerfüllbar.
	\square Ist φ unerfüllbar, gilt für jedes $\psi,$ dass $\varphi \models \psi.$
	\Box Zu jeder Formel gibt es eine gleich grosse logisch äquivalente Formel in KNF.
	\Box Ist WB eine unerfüllbare Wissensbasis, kann man mit dem Resolutionskalkül die leere Klausel \Box aus WB ableiten.
(b)	Welche der folgenden Behauptungen zur Prädikatenlogik sind wahr?
	$ \Box \ (\forall x (P(x) \land \exists y (Q(y,x) \lor (x=y))) \lor P(y)) \text{ ist ein Satz.} $
	$\Box (\forall x \varphi \land \forall x \psi) \equiv \forall x (\varphi \land \psi)$
	$\Box (\forall x \varphi \lor \forall x \psi) \equiv \forall x (\varphi \lor \psi)$
	\Box Sind die Formelmengen Φ und Ψ erfüllbar, so ist auch $\Phi \cup \Psi$ erfüllbar.
(c)	Welche der folgenden Aussagen über Sprachen und Grammatiken sind wahr?
	\Box Für jede Sprache gibt es eine Grammatik, die sie erzeugt.
	\Box Jede kontextfreie Sprache kann von einer kontextsensitiven Grammatik erzeugt werden.
	\square Für $\Sigma = \{a, b\}$ gilt $\varepsilon \in \Sigma^*$ und $aba \in \Sigma^*$.
	\square Das leere Wort ε ist in jeder unendlichen Typ-0-Sprache enthalten.
(d)	Welche der folgenden Aussagen zu regulären Sprachen sind wahr?
	\Box Jede endliche Sprache ist regulär.
	\Box Zu jedem NFA mit n Zuständen gibt es einen NFA mit $n+1$ Zuständen, aber nur einem Endzustand, der dieselbe Sprache akzeptiert.
	\square Akzeptiert ein NFA mit n Zuständen eine Sprache, so hat jeder Minimalautomat für diese Sprache höchstens n Zustände.
	\Box Mit dem Pumping-Lemma kann man beweisen, dass eine Sprache regulär ist.
(e)	Welche der folgenden Aussagen zu kontextfreien Sprachen und PDAs sind wahr?
	\Box Jede Sprache, die durch eine kontextfreie Grammatik beschrieben werden kann, kann auch von einem PDA erkannt werden.
	\square Die Sprache $L=\{\mathtt{a}^n\mathtt{b}^n\mid n\in\mathbb{N}_0\}$ ist kontextfrei.
	\Box Jede kontextfreie Sprache kann von einem PDA mit nur einem Zustand erkannt werden.
	\square Ist L_1 eine kontextfreie Sprache und L_2 eine reguläre Sprache, so ist $L_1 \cup L_2$ kontextfrei.

(f)	Welche der folgenden Aussagen sind wahr? Betrachten Sie bei dieser Frage nur numerische Funktionen $f: \mathbb{N}_0^k \to \mathbb{N}_0$, keine Funktionen mit Wörtern als Eingabe.
	\Box Turing-Maschinen sind weniger mächtig als WHILE-Programme.
	\Box Zu jeder deterministischen Turingmaschine kann ein GOTO-Programm konstruiert werden, das dieselbe Funktion berechnet.
	\Box Zu jedem GOTO-Programm kann eine deterministische Turingmaschine konstruiert werden, die dieselbe Funktion berechnet.
	\square Die Ackermann-Funktion ist WHILE-berechenbar.
(g)	Welche der folgenden Probleme sind entscheidbar?
	\square "Hält ein gegebenes GOTO-Programm an, wenn alle Eingabevariablen den Wert 0 aufweisen?"
	\square die Sprache $L\cup\bar{L},$ wobe i L semientscheidbar ist
	\Box das Travelling Salesperson Problem (TSP)
	\square die Sprache $\{\varepsilon\}$
(h)	Sei X ein unentscheidbares Problem. Welche der folgenden Aussagen folgen?
	\square Alle Probleme Y mit $X \leq Y$ sind unentscheidbar.
	\square Alle Probleme Y mit $Y \leq X$ sind unentscheidbar.
	\square X ist das spezielle Halteproblem.
	\square X und \bar{X} sind semi-entscheidbar.
(i)	Welche der folgenden Aussagen beschreiben die Beweisidee des Satzes von Cook und Levin?
	\Box Übersetze die Funktionsweise einer nichtdeterministischen Turingmaschine mit polynomieller Laufzeit in eine Logikformel.
	\Box Zeige, dass das Erfüllbarkeitsproblem der Aussagenlogik un entscheidbar ist.
	\square Reduziere jedes Problem in NP auf SAT.
	\Box Konstruiere zu jeder polynomiell grossen Logikformel eine Turingmaschine, die diese erfüllt.
(j)	Seien X und Y NP-vollständige Probleme. Was folgt?
	\square Wenn es für X effiziente Algorithmen gibt, dann auch für $Y.$
	\square Wenn es für X effiziente Algorithmen gibt, dann auch für BINPACKING und TSP.
	$\square X \leq_{\mathrm{p}} \mathrm{SAT}$
	\square SAT $\leq_{p} X$

Aufgabe 1 (4+2+4 Punkte)

(a) Geben Sie für folgende aussagenlogische Formel ein Modell an und beweisen Sie mit der Semantik der Aussagenlogik, dass das Modell tatsächlich eine erfüllende Belegung für die Formel ist.

$$((A \land (B \lor C)) \land \neg C)$$

(b) Seien A, B und C atomare Aussagen. Geben Sie für jede der folgenden Eigenschaften eine aussagenlogische Formel über $\{A, B, C\}$ an.

erfüllbar:
allgemeingültig:
unerfüllbar:
besitzt genau 3 Modelle:

(c) Zeigen Sie durch Anwendung von Äquivalenzen, dass folgende aussagenlogische Formeln äquivalent sind.

$$((B \vee \neg C) \to (A \vee B)) \equiv ((A \vee B) \vee C)$$

 ${\it Zus\"{a}tzlicher~Platz~f\"{u}r~Aufgabe~1:}$

Theorie der Informatik (10948-01)

Aufgabe 2 (4+6 Punkte)

$$\mathrm{Sei}\ \Sigma = \{\mathtt{a},\mathtt{b}\}.$$

- (a) Geben Sie einen DFA an, der die Sprache akzeptiert, die durch den regulären Ausdruck a*b(ab)* beschrieben wird. Es reicht aus, wenn Sie den DFA graphisch durch ein Diagramm angeben.
- (b) Verwenden Sie das Pumping-Lemma, um zu zeigen, dass $L=\{\mathtt{a}^n\mathtt{b}^{2n}\mid n\geq 0\}$ nicht regulär ist.

 ${\it Zus\"{a}tzlicher~Platz~f\"{u}r~Aufgabe~2:}$

Aufgabe 3 (4+6 Punkte)

Betrachen Sie die folgende Sprache

$$L = \{\mathbf{a}^n \mathbf{b}^m \mathbf{c}^{2n} \mid n, m \ge 0\}$$

über dem Alphabet $\Sigma = \{a, b, c\}.$

- (a) Geben Sie eine kontextfreie Grammatik G an, die L erzeugt, also $\mathcal{L}(G) = L$. Geben Sie hierzu alle Komponenten von G an.
- (b) Konstruieren Sie einen Kellerautomaten (PDA) M, der genau L akzeptiert. Es reicht aus, wenn Sie M graphisch durch ein Diagramm angeben.

Zur Erinnerung: Ein PDA wird mit dem Kellersymbol # auf dem Keller initialisiert und akzeptiert genau dann, wenn das Eingabewort abgearbeitet und der Keller leer ist (es gibt also keinen akzeptierenden Endzustand).

 ${\it Zus\"{a}tzlicher~Platz~f\"{u}r~Aufgabe~3:}$

Aufgabe 4 (4+4+2 Punkte)

(a) Schreiben Sie ein LOOP-Programm, das die Summe der ersten n natürlichen Zahlen zurückliefert, also folgende Funktion berechnet:

$$f(n) = \sum_{i=1}^{n} i$$

Sie dürfen alle Syntaxkonstrukte aus Vorlesung und Übungen verwenden.

(b) Geben Sie an, wie sich das folgende syntaktische Konstrukt durch bekannte Konstrukte für LOOP-Programme simulieren lässt. Die Semantik sei wie folgt: x_i wird von 1 bis x_j hochgezählt und für jeden dieser Werte wird P einmal ausgeführt. Sie dürfen alle Syntaxkonstrukte aus Vorlesung und Übungen verwenden. Weiterhin dürfen Sie annehmen, dass x_i und x_j in P nicht verändert werden.

FOR
$$x_i = 1$$
 TO x_j DO P

(c) Welche einstellige Funktion berechnet das folgende WHILE-Programm? Ist diese Funktion LOOP-berechenbar? Begründen Sie Ihre Antwort zur zweiten Frage.

$$x_2 := 1;$$

 $x_3 := 0;$
WHILE $x_2 \neq 0$ DO
IF $x_1 = x_3$ THEN
 $x_2 := 0$
END;
 $x_3 := x_3 + 2$
END;
 $x_0 := 1$

 ${\it Zus\"{a}tzlicher~Platz~f\"{u}r~Aufgabe~4:}$

Theorie der Informatik (10948-01)

Aufgabe 5 (3+1+6 Punkte)

- (a) Beschreiben Sie informell (jeweils 1 Satz), was es bedeutet, dass eine gegebene Sprache $L\subseteq \Sigma^*$
 - entscheidbar,
 - $\bullet \ semi\text{-}entscheidbar,$
 - unentscheidbar ist.
- (b) Beschreiben Sie (ohne Beweis) die Beziehungen zwischen den Eigenschaften entscheidbar, semi-entscheidbar, unentscheidbar: welche Eigenschaften implizieren welche anderen? Welche Eigenschaften schliessen sich gegenseitig aus?
- (c) Welche der folgenden Sprachen sind entscheidbar? Geben Sie jeweils eine kurze Begründung (1 Satz).
 - $L_1 = \{w \in \{0,1\}^* \mid M_w \text{ berechnet eine Funktion mit endlichem}\}$ Definitionsbereich
 - $L_2 = \{w \in \{0,1\}^* \mid M_w \text{ berechnet eine LOOP-berechenbare Funktion } \}$
 - $L_3 = \{w \in \{0,1\}^* \mid M_w \text{ berechnet eine Turing-berechenbare Funktion } \}$

Hinweis: Verwenden Sie (wo möglich) den Satz von Rice, um Unentscheidbarkeit zu zeigen.

 ${\it Zus\"{a}tzlicher~Platz~f\"{u}r~Aufgabe~5:}$

Übungsklausur FS 2015

Theorie der Informatik (10948-01)

Aufgabe 6 (3+7 Punkte)

Betrachten Sie die folgenden Entscheidungsprobleme:

DIRHAMILTONPATH:

- Gegeben: gerichteter Graph $G = \langle V, E \rangle$
- Gefragt: Enthält G einen Hamiltonpfad?

DIRHAMILTONPATHWITHENDPOINTS:

- Gegeben: gerichteter Graph $G = \langle V, E \rangle$, Startknoten $v_s \in V$, Endknoten $v_e \in V$
- Gefragt: Enthält G einen Hamiltonpfad von v_s nach v_e , also einen Hamiltonpfad $\pi = \langle v_1, \dots, v_n \rangle$ mit $v_1 = v_s$ und $v_n = v_e$?
- (a) Zeigen Sie, dass DIRHAMILTONPATHWITHENDPOINTS in NP liegt, indem Sie einen nichtdeterministischen, polynomiellen Algorithmus angeben.
- (b) Beweisen Sie, dass DIRHAMILTONPATHWITHENDPOINTS NP-hart ist. Sie dürfen dabei verwenden, dass das Problem DIRHAMILTONPATH NP-vollständig ist.

Zur Erinnerung: Ein Hamiltonpfad in einem gerichteten Graphen $\langle V, E \rangle$ ist eine Knotenfolge $\pi = \langle v_1, \dots, v_n \rangle$, die einen Pfad definiert $(\langle v_i, v_{i+1} \rangle \in E$ für alle $1 \leq i < n)$ und jeden Knoten des Graphen genau einmal enthält.

 ${\it Zus\"{a}tzlicher~Platz~f\"{u}r~Aufgabe~6:}$