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Pumping Lemma: Motivation
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Pumping Lemma: Motivation

_{ Man kann zeigen, dass V.
( eine Sprache regular ist, indem man )
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7 Automaten oder regulidren Ausdruck \
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@ Direkter Beweis, dass keine regulare
Grammatik existiert, die die Sprache erzeugt
~ i.A. schwierig
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Pumping Lemma: Motivation

e Man kann zeigen, dass L
/ eine Sprache regular ist, indem man \
eine geeignete Grammatik, endlichen
Automaten oder regulidren Ausdruck
angibt. Wie kann man zeigen, dass eine

‘. Sprache nicht regular ist?
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@ Direkter Beweis, dass keine regulare
Grammatik existiert, die die Sprache erzeugt
~ i.A. schwierig

@ Pumping Lemma: Notwendige Eigenschaft,
die fiir alle reguldren Sprachen gelten muss.
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Pumping Lemma

Satz (Pumping Lemma)

Sei L eine regulire Sprache. Dann gibt es ein n € N (eine
Pumpingzahl fiir L), so dass sich alle Worter x € L mit |x| > n
zerlegen lassen in x = uvw, so dass folgendes gilt:

Q |v[>1,
Q |uv| < n, und
Q fiirallei =0,1,2,... gilt: uv'w € L.
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Pumping Lemma: Beweis

Satz (Pumping Lemma)

Sei L eine reguldre Sprache. Dann gibt es ein n € N, so dass sich
alle Wérter x € L mit |x| > n zerlegen lassen in x = uvw, so dass:

Q |v|>1,
Q |uv| < n, und
Q firallei=0,1,2,... gilt: uv'w € L.
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Pumping Lemma: Beweis

Satz (Pumping Lemma)

Sei L eine reguldre Sprache. Dann gibt es ein n € N, so dass sich

alle Worter x € L mit |x| > n zerlegen lassen in x = uvw, so dass:
Q |v|>1,

Q |uv| <n, und
Q fiirallei =0,1,2,... gilt: uv'w € L.

Fiir reguldres L existiert DFA M = (Z, %, 6, z9, E) mit L(M) = L.
Wir zeigen, dass n = |Z| die geforderten Eigenschaften hat.
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Pumping Lemma: Beweis

Satz (Pumping Lemma)

Sei L eine reguldre Sprache. Dann gibt es ein n € N, so dass sich
alle Worter x € L mit |x| > n zerlegen lassen in x = uvw, so dass:

Q |v[>1,
Q |uv| <n, und
Q fiirallei =0,1,2,... gilt: uv'w € L.

Beweis.

Fiir reguldres L existiert DFA M = (Z, %, 6, z9, E) mit L(M) = L.
Wir zeigen, dass n = |Z| die geforderten Eigenschaften hat.
Betrachte beliebiges x € £L(M) mit Lange |x| > |Z|. Inklusive dem
Startzustand durchlduft M beim Abarbeiten von x insgesamt

|x| + 1 Zustéande. Wegen |x| > |Z| muss daher mindestens ein
Zustand mehrfach durchlaufen werden.

| A
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Pumping Lemma: Beweis

Satz (Pumping Lemma)

Sei L eine reguldre Sprache. Dann gibt es ein n € N, so dass sich
alle Wérter x € L mit |x| > n zerlegen lassen in x = uvw, so dass:

Q |v|>1,
Q |uv| < n, und
Q firallei=0,1,2,... gilt: uv'w € L.

Beweis (Fortsetzung).

Wahle Zerlegung x = uvw, so dass M nach Lesen von v und Lesen
von uv im gleichen Zustand ist. Offensichtlich kdnnen wir die
Zerlegung so wahlen, dass |v| > 1 und |uv| < |Z] erfiillt sind.
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Pumping Lemma: Beweis

Satz (Pumping Lemma)

Sei L eine reguldre Sprache. Dann gibt es ein n € N, so dass sich
alle Worter x € L mit |x| > n zerlegen lassen in x = uvw, so dass:

Q |v[>1,
Q |uv| <n, und
Q fiirallei =0,1,2,... gilt: uv'w € L.

Beweis (Fortsetzung).

Das Teilwort v entspricht nach Abarbeitung von u einer Schleife in
dem DFA und kann daher beliebig oft durchlaufen werden. Jede
anschliessende Fortsetzung mit w endet im selben Endzustand wie
die Abarbeitung von x. Daher gilt fiir alle /i = 0,1,2,..., dass
wiw € L(M) = L. O

o’
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Pumping Lemma: Verwendung

Verwendung des Pumping Lemma (PL):

Beweis der Nichtregularitat

@ Wenn L regular ist, dann gilt PL fiir L
@ Wenn PL fiir L gilt, kann man nichts liber L aussagen.
@ Aber: Wenn PL fiir L nicht gilt, kann L nicht regular sein.

@ D.h.: Wenn es kein n € N mit den geforderten Eigenschaften
fiir PL gibt, dann kann L nicht regular sein.
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Pumping Lemma: Beispiel

Beispiel
Die Sprache L = {a"b" | n € N} ist nicht regular.

Beweis.

Angenommen L ist reguldr. Dann sei p eine Pumpingzahl fiir L.

Das Wort x = aPbP ist in L und hat Lange > p. Sei x = uvw eine
Zerlegung mit den Eigenschaften aus dem PL.

Dann ist auch das Wort x’ = uv?w in L. Da |uv| < p besteht uv

nur aus Symbolen a und x’ = alula?VIgP—luvipp — gptIvipe,
Da |v| > 1 gilt p+ |v| # p und damit x’ & L.
Dies ist ein Widerspruch zum PL. ~~ L nicht regular. [

A
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Beispiel

Folgende DFAs akzeptieren die gleiche Sprache:

1
OO
->( 2 (1/ 73 0.1

Frage: Was ist der kleinste DFA, der diese Sprache akzeptiert?
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Minimalautomat: Definition

Definition

Ein Minimalautomat fiir eine reguldre Sprache L ist ein DFA
M= (Z,%,0,z, E) mit L(M) = L und einer minimalen Anzahl
von Zustanden. Das heisst, es gibt keinen DFA

M = (Z',%X,0, z5, E') mit LIM) = L(M') und |Z'| < |Z]|.
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Minimalautomat: Definition

Definition

Ein Minimalautomat fiir eine reguldre Sprache L ist ein DFA
M= (Z,%,0,z, E) mit L(M) = L und einer minimalen Anzahl
von Zustanden. Das heisst, es gibt keinen DFA

M = (Z',%X,0, z5, E') mit LIM) = L(M') und |Z'| < |Z]|.

Wie findet man einen Minimalautomaten?

Idee:
@ Beginne mit irgendeinem DFA, der die Sprache akzeptiert.

@ Verschmelze Zustinde, von denen aus die gleichen Worter in
Endzustand fiihren.
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Minimalautomat: Algorithmus

Eingabe: DFA M

(ohne vom Startzustand aus unerreichbare Zustiande)

Ausgabe: Angabe, welche Zustinde man verschmelzen muss,

um aquivalenten Minimalautomaten zu erhalten
Stelle Tabelle aller Zustandspaare {z,z'} mit z # z’ auf.
Markiere alle Paare {z,z'} mit z€ E und 2/ € E.

Falls fiir ein unmarkiertes Paar {z,z'} gilt, dass
{6(z,a),0(2',a)} fir ein a € L bereits markiert ist, markiere
auch {z,2'}.

Wiederhole den letzten Schritt, bis sich keine Anderung mehr
ergibt.

Alle jetzt noch unmarkierten Paare kénnen jeweils zu einem
Zustand verschmolzen werden.
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Minimalautomat: Beispiel
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Minimalautomat: Beispiel

4
22
Z3

A

20 Z1 22 Z3
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Minimalautomat: Beispiel
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20 Z1 22 Z3
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Minimalautomat: Beispiel

4

22

Z3

Zy | x| x| x| x

20 Z1 22 Z3
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Minimalautomat: Beispiel

4
22
Z3

A

X

X | X | X | X

20 Z1 22 Z3
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Minimalautomat: Beispiel
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X X
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20 Z1 22 Z3
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Minimalautomat: Beispiel

4
22
Z3

A

x|
X
X X
X | X | X | X
20 Z1 22 Z3

Zustinde zp, zp und z1, z3 konnen
)

jeweils zu einem Zustand

verschmolzen werden.
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Minimalautomat: Beispiel

4

22
Z3

A

1

Ergebnis: 1 0.1

0

x|

X
X X
X | X | X | X

20 Z1 22 Z3

Zustinde zp, zp und z1, z3 konnen
)

jeweils zu einem Zustand

verschmolzen werden.
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Eindeutigkeit von Minimalautomaten

Alle Minimalautomaten fiir eine Sprache L sind bis auf Isomorphie
(d.h. Umbenennnen der Zustinde) identisch.

Ohne Beweis.
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Fragen

Fragen?
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Abschlusseigenschaften
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Wie kann man ™
- reguldre Sprachen kombinieren,
N . . we

[ so dass man wieder eine regulare j

( Sprache erhilt? ) T
N ~_" —
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Abschlusseigenschaften: Operationen

Seien L und L’ reguldre Sprachen iiber ¥ bzw. ¥’

Wir betrachten folgende Operationen:
e Vereinigung LUL ={w | w € L oder w € L'} iiber X UY'
o Schnitt LNL ={w|we&Lundwe L'} iberxNY’
o Komplement L = {w | w & L} iiber ¥
e Produkt LL' ={uv |u€ Lundvel'} iber LU
Spezialfall: L" = L"1L, wobei L% = {¢}
e Stern L* = UkzoL iiber ¥
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Abschlusseigenschaften

Definition (Abgeschlossenheit)

Sei K eine Klasse von Sprachen. Dann ist K abgeschlossen unter
Vereinigung (Schnitt, Komplement, Produkt, Stern), falls aus

L e K und L' € K folgt, dass LU L' € K (bzw. LN L' € K, L € K,
L' e K, L* € K).
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Abschlusseigenschaften

Definition (Abgeschlossenheit)

Sei K eine Klasse von Sprachen. Dann ist K abgeschlossen unter
Vereinigung (Schnitt, Komplement, Produkt, Stern), falls aus

L e K und L' € K folgt, dass LU L' € K (bzw. LN L' € K, L € K,
L' e K, L* € K).

| A\

Satz
Die regularen Sprachen sind abgeschlossen unter:

o Vereinigung
Schnitt
Komplement
Produkt
Stern
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Abschlusseigenschaften

Beweis.
Abschluss unter Vereinigung, Produkt und Stern folgt daraus, dass

fir regulare Ausdriicke « und 3 auch («|8), (af) und (a*)
reguldare Ausdriicke sind.
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Abschlusseigenschaften

Beweis.

Abschluss unter Vereinigung, Produkt und Stern folgt daraus, dass
fiir reguldre Ausdriicke « und 3 auch («|5), (af) und (a*)
reguldare Ausdriicke sind.

Komplement: Sei M = (Z, %, 4, zg, E) ein DFA mit £(M)_: L.
Dann ist M' = (Z,X%,0,2y,Z \ E) ein DFA mit L(M') = L.
akzeptiert.
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Abschlusseigenschaften

Abschluss unter Vereinigung, Produkt und Stern folgt daraus, dass
fiir reguldre Ausdriicke « und 3 auch («|5), (af) und (a*)
reguldre Ausdriicke sind.

Komplement: Sei M = (Z, X%, 6, zy, E) ein DFA mit [,(M)_: L.
Dann ist M' = (Z,X%,0,2y,Z \ E) ein DFA mit L(M') = L.
akzeptiert.

Schnitt: Seien My = (Zl, 21,51,201, E1) und
My = (23, X2, 02, 202, E2) DFAs. Der Kreuzproduktautomat

M = (Z1 x 2o, X1 N 3,6, (201, 202), E1 X E2)

mit 6((z1, 22), a) = (01(z1, a), 92(22, 3))
akzeptiert L(M) = L(M1) N L(M>). O
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Entscheidbarkeit

Definition (Entscheidbarkeit (intuitiv))

Eine Sprache L iiber X heisst entscheidbar, wenn es einen
Algorithmus gibt, der bei jeder Eingabe eines Wortes w € ©*
terminiert und ausgibt, ob w € L oder nicht.
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Probleme als Sprachen

Beispiel (Leerheitsproblem)

Das Leerheitsproblem Py ist folgendes Problem:

Gegeben: Reguldre Grammatik G
Gefragt: Ist £L(G) = 07?

Oder alternativ als Sprache formuliert:

Py = {w | w kodiert eine Grammatik G mit £(G) =0}
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Gegeben-Gefragt-Notation vs. Definition als Menge

Definition (neues Problem P)

Gegeben: Instanz 7
Gefragt: Hat Z eine bestimmte Eigenschaft?
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Gegeben-Gefragt-Notation vs. Definition als Menge

Definition (neues Problem P)

Gegeben: Instanz 7
Gefragt: Hat Z eine bestimmte Eigenschaft?

entspricht der Definition

Definition (neues Problem P)

Das Problem P ist die Sprache
P = {w | w kodiert eine Instanz Z mit der gefragten Eigenschaft}.
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Entscheidbarkeit: Wortproblem

Satz (Wortproblem ist entscheidbar)

Das Wortproblem P¢ fiir reguldre Sprachen ist:

Gegeben: Regulire Grammatik G mit Terminalalphabet ¥
und Wort w € L*
Gefragt: Ist w € L(G)?

Das Wortproblem ist entscheidbar.

Beweis.

Konstruiere einen DFA M mit £L(M) = £(G) (die Beweise aus dem
vorherigen Kapitel beschreiben ein geeignetes Verfahren). Simuliere
M auf Eingabe w. Die Simulation endet nach |w| Schritten. Der

DFA M ist dann in einem Endzustand gdw. w € £L(G). O

4

| A
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Entscheidbarkeit: Leerheitsproblem

Satz (Leerheitsproblem ist entscheidbar)

Das Leerheitsproblem Py fiir reguldre Sprachen ist:

Gegeben: Regulire Grammatik G
Gefragt: Ist L(G) =07

Das Leerheitsproblem ist entscheidbar.

| A

Beweis.

Konstruiere einen DFA M mit L(M) = L(G). Im
Zustandsdiagramm von M gibt es keinen Pfad vom Startzustand
zu einem Endzustand gdw. £(G) = (. O

o
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Entscheidbarkeit: Endlichkeitsproblem

Satz (Endlichkeitsproblem ist entscheidbar)

Das Endlichkeitsproblem Poe fiir reguldre Sprachen ist:

Gegeben: Regulire Grammatik G
Gefragt: Ist |£L(G)| < 00?

Das Endlichkeitsproblem ist entscheidbar.

Beweis

Konstruiere einen DFA M mit L(M) = L(G). Im
Zustandsdiagramm von M gibt es einen Zyklus, der vom
Startzustand aus erreichbar ist und von dem aus ein Endzustand
erreichbar ist, gdw. |£(G)| = oo. O

| A

4
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Entscheidbarkeit: Schnittproblem

Satz (Schnittproblem ist entscheidbar)
Das Schnittproblem Pq fiir reguldre Sprachen ist:

Gegeben: Regulire Grammatiken G und G’
Gefragt: Ist L(G)NL(G') =07

Das Schnittproblem ist entscheidbar.

Beweis.

| A\

Da die reguldren Sprachen unter Schnitt abgeschlossen sind,
konstruieren wir (z.B. iiber den Zwischenschritt eines
Kreuzproduktautomaten) eine Grammatik G” mit

L(G") = L(G)N L(G") und verwenden das
Entscheidungsverfahren fiir das Leerheitsproblem Py. O
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Entscheidbarkeit: Aquivalenzproblem

Satz (Aquivalenzproblem ist entscheidbar)
Das Aquivalenzproblem P— fiir regulire Sprachen ist:

Gegeben: Regulidre Grammatiken G und G’
Gefragt: Ist L(G) = L(G")?

Das Aquivalenzproblem ist entscheidbar.

Beweis.

| \

Es gilt allgemein fiir Sprachen L und L', dass
L="Lgdw. (LNL)Yu(LnL)=0.

Die reguldren Sprachen sind unter Schnitt, Vereinigung und
Komplement abgeschlossen. Wir kénnen eine entsprechende
Grammatik konstruieren und das Entscheidungsverfahren fiir das
Leerheitsproblem Py verwenden. Ol
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Zusammenfassung

@ Mit dem Pumping Lemma kann man zeigen, dass eine
Sprache nicht regular ist.

@ Minimalautomaten sind kleinste mogliche DFAs fiir eine
Sprache und fiir jede Sprache eindeutig.

@ Die reguldren Sprachen sind unter allen giangigen Operationen
abgeschlossen.

@ Die gingigen Probleme sind fiir die regularen Sprachen
entscheidbar.
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