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Einordnung

Einordnung:

Brettspiele

Umgebung:

@ statisch vs.

@ deterministisch vs. VS.

vollstandig vs. VS. beobachtbar
o diskret vs.
° vs. mehrere Agenten (Gegenspieler)

Losungsansatz:

@ problemspezifisch vs. Vs.




Brettspiele: Uberblick

Kapiteliiberblick:
@ 38. Einfiihrung und Minimax-Suche
@ 39. Alpha-Beta-Suche und Ausblick



Einfiihrung

9000000000

Einfiihrung



Einfiihrung
0®00000000

Warum Brettspiele?

Brettspiele sind eines der altesten Gebiete der Kl
(Shannon, Turing 1950).

@ sehr abstrakte Form von Problem, leicht zu formalisieren
e bendtigen offensichtlich , Intelligenz" (oder?)

@ Traum von einer intelligenten Maschine, die Schach spielt,
ist dlter als der elektronische Computer

@ vgl. von Kempelens , Schachtiirke” (1769),
Torres y Quevedos ,, El Ajedrecista” (1912)
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Eingrenzung

Wir betrachten Brettspiele mit folgenden Eigenschaften:
@ aktuelle Situation durch endliche Menge von Positionen
(= Zustanden) reprasentierbar
@ Situationsdnderungen durch endliche Menge von Ziigen
(= Aktionen) reprasentierbar
@ es gibt zwei Spieler, von denen in jeder Position

e einer am Zug ist
e oder es ist eine Endposition

o Endposition haben Nutzenbewertung

@ Nutzen von Spieler 2 immer Gegenteil von Nutzen
von Spieler 1 (Nullsummenspiel)

e ,endlose" Spielverldufe gelten als Remis (Nutzen 0)

kein Zufall, keine geheimen Informationen
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Beispiel: Schach

Beispiel (Schach)
@ Positionen beschrieben durch:

e Stellung der Figuren
o Wer ist am Zug?
e en-passant- und Rochade-Rechte

@ Ziige gegeben durch Spielregeln

@ Endpositionen: Matt- und Patt-Stellungen der beiden Spieler
@ Nutzen der Endpositionen aus Sicht des ersten Spielers
(Weiss) zum Beispiel:
e +100 wenn Schwarz matt
e 0 bei Patt
o —100 wenn Weiss matt
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Abgrenzungen

Wichtige Klassen von Spielen, die wir nicht beriicksichtigen:
e mit Zufall (z. B. Backgammon)
@ mit mehr als zwei Spielern (z. B. Halma)
@ mit verdeckter Information (z. B. Bridge)
@ mit gleichzeitigen Ziigen (z. B. Diplomacy)
@ ohne Nullsummeneigenschaft (,Spiele” aus der Spieltheorie
~ Auktionen, Wahlverfahren, Wirtschaft, Politik, .. .)
@ ... und viele weitere Generalisierungen

Viele dieser Spieltypen kdnnen mit dhnlichen/erweiterten
Algorithmen behandelt werden.
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Formalisierung

Brettspiele gegeben durch Zustandsraume
S =(S,A, cost, T,sp,Ss) mit zwei Erweiterungen

@ Spielerfunktion player: S\ S, — {1,2} gibt an,
welcher der beiden Spieler am Zug ist

@ Nutzenfunktion v : S, — R gibt Nutzen
(aus Sicht von Spieler 1) in Endpositionen an.

sonstige Anderungen:

@ Aktionskosten cost werden nicht benétigt

(Wir haben 3hnliche Definitionen inzwischen oft gesehen
und gehen daher nicht weiter ins Detail.)
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Terminologie

Im Kontext von Brettspielen oft abweichende Begriffe fiir Dinge,
die wir bereits kennen:

@ Zustand, Zielzustand, etc. ~» Position, Endposition etc.
o Aktion ~» Zug

@ Suchbaum ~~ Spielbaum
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Spezielle vs. allgemeine Algorithmen

@ Wir betrachten hier Verfahren, die fiir gute Performance
auf spezielle Brettspiele zugeschnitten werden miissen,
z. B. durch Implementierung einer geeigneten
Bewertungsfunktion.

~ vgl. Kapitel zu informierten Suchverfahren
@ analog zur Verallgemeinerung von Suchverfahren auf
deklarativ beschriebene Probleme (Handlungsplanung)
kdnnen auch Brettspiele in einem allgemeinen Rahmen

betrachtet werden, wo Spielregeln (Zustandsraume)
Teil der Eingabe sind

~» general game playing, jahrliche Wettbewerbe seit 2005
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Warum sind Brettspiele schwierig?

Ebenso wie klassische Suchprobleme haben (interessante)
Brettspiele astronomisch grosse Zustandsraume:

@ Schach: ca. 10%° erreichbare Zustinde;
Partie mit 50 Ziigen/Spieler und Verzweigungsgrad 35:
Baumgrésse ca. 35190 ~ 10154

e Go: mehr als 10190 Zustinde;
Partie mit ca. 300 Ziigen, Verzweigungsgrad ca. 200:
Baumgrosse ca. 200300 ~ 10990
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Warum sind Brettspiele schwierig?

Ebenso wie klassische Suchprobleme haben (interessante)
Brettspiele astronomisch grosse Zustandsraume:

@ Schach: ca. 10%° erreichbare Zustinde;
Partie mit 50 Ziigen/Spieler und Verzweigungsgrad 35:
Baumgrosse ca. 35100 ~ 10154

e Go: mehr als 10190 Zustinde;
Partie mit ca. 300 Ziigen, Verzweigungsgrad ca. 200:
Baumgrosse ca. 200300 ~ 10990

Dazu kommt, dass es nicht mehr reicht,
einen Losungspfad zu finden:

@ bendtigt wird eine Strategie, die auf alle moglichen
Verhaltensweisen des Gegners reagiert

@ (blicherweise implementiert als Algorithmus,
der ,,on demand” den nachsten Zug liefert
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Algorithmen fiir Brettspiele

Gute Algorithmen fiir Brettspiele:
@ sehen moglichst weit voraus (tiefe Suche)

@ betrachten nur interessante Teile des Spielbaums
(selektive Suche, analog zu heuristischen Suchverfahren)

@ nehmen moglichst genaue Bewertung von Positionen vor
(Evaluationsfunktionen, analog zu Heuristiken)
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Terminologie fiir Zwei-Personen-Spiele

@ Spieler werden traditionell MAX und MIN genannt.

o Wir wollen Ziige fiir MAX berechnen
(MIN ist der Gegner).

@ MAX versucht seinen Nutzen in der erreichten Endposition
(gegeben durch die Funktion u) zu maximieren.

@ MIN versucht u zu minimieren (was MINs Nutzen maximiert)
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Beispiel: Tic-Tac-Toe

MAX ()
MIN (o)
MAX (x)

MIN (o)

TERMINAL [ [olx] [o]
O
utity -1 0 +1

@ Spielbaum mit Spieler am Zug (MAX/MIN) links markiert
@ in letzter Reihe Endpositionen mit ihrem Nutzen

@ Grosse des Spielbaums?
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Minimax: Berechnung

1. Tiefensuche durch den Spielbaum
2. Wende Nutzenfunktion auf Endpositionen an.
3. Von unten nach oben durch den Baum berechne Nutzen
von inneren Knoten wie folgt:
o MIN ist am Zug:
Nutzen ist Minimum der Nutzenwerte der Kinder
o MAX ist am Zug:
Nutzen ist Maximum der Nutzenwerte der Kinder
4. Zugauswahl fiir MAX in der Wurzel:
wahle einen Zug, der den berechneten Nutzenwert maximiert
(Minimax-Entscheidung)
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Minimax: Beispiel

MAX

MIN
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Minimax: Diskussion

@ Minimax ist der einfachste (brauchbare) Spielsuchalgorithmus

e Fiihrt zu optimaler Strategie® (im Sinne der Spieltheorie,
d. h. unter Annahme perfekter Gegenwehr), ist aber fiir
komplexe Spiele zu zeitaufwindig.

o Egal, wie der Gegner spielt, wird mindestens
der fiir die Wurzel berechnete Nutzenwert erreicht.

@ Spielt der Gegner perfekt, wird genau dieser Wert erreicht.

(*) bei Spielen, die nicht in Zyklen geraten kdnnen;
ansonsten wird es komplizierter (da der Baum unendlich wird)
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Minimax: Pseudo-Code

(geht von alternierender Spielerreihenfolge aus)

function MINIMAX -DECISIONstate) returns an action
returnargmax, . Actionss) MIN-VALUE(RESULT(state, a))

function MAX -VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
V<4 —00
for each a in ACTIONS(state) do
v < MAX (v, MIN-VALUE(RESULT(s, a)))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
(R e'e]
for each a in ACTIONS(state) do
v <~ MIN(v, MAX-VALUE(RESULT(s, a)))
return v

Was, wenn der Spielbaum zu gross fiir Minimax ist?
~~ approximieren durch Bewertungsfunktionen
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Bewertungsfunktionen

@ Problem: Spielbaum zu gross

@ |dee: suche nur bis zu einer bestimmten Tiefe

@ wenn diese Tiefe erreicht ist, schatze den Nutzen anhand
heuristischer Kriterien (als wére eine Endposition erreicht)

Beispiel (Bewertungsfunktion in Schach)

e Material: Bauer 1, Springer 3, Laufer 3, Turm 5, Dame 9
positives Vorzeichen fiir Figuren von MAX, negatives bei MIN

@ Bauernstruktur, Mobilitat, ...

Daumenregel: 3-Punkte-Vorteil ~~ sicherer Sieg

Gute Bewertungsfunktionen sind entscheidend!

@ Hohe Werte sollten hohen ,,Gewinnchancen" entsprechen,
damit Verfahren gut funktioniert.

@ Gleichzeitig sollte Bewertung schnell berechnet werden,
um tief suchen zu konnen.
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Lineare Bewertungsfunktionen

Am h&ufigsten werden gewichtete lineare Funktionen verwendet:
wifi + wof + - - - + wpf,

wobei die w; Gewichte und und die f; Features sind.
@ enthdlt Annahme, dass Beitrdge der Features unabhingig sind
(normalerweise falsch, aber vertretbar)

@ erlaubt effiziente inkrementelle Berechnung,
wenn Features sich nicht in jedem Zug dndern

o Gewichte kdnnen automatisch gelernt werden

o Features stammen (in der Regel) von menschlichen Experten
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Wie tief suchen?

@ Ziel: In gegebener Bedenkzeit moglichst tief suchen
@ Problem: Suchzeit schwer vorherzusehen

@ Losung: iteratives Vertiefen

o Abfolge von Suchen, die immer tiefer gehen
o Zeit lauft ab: liefere Ergebnis letzter abgeschlossener Suche
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Wie tief suchen?

@ Ziel: In gegebener Bedenkzeit moglichst tief suchen

@ Problem: Suchzeit schwer vorherzusehen
@ Losung: iteratives Vertiefen
o Abfolge von Suchen, die immer tiefer gehen
o Zeit lauft ab: liefere Ergebnis letzter abgeschlossener Suche
@ Verfeinerung: Suchtiefe nicht uniform, sondern tiefer
in ,,unruhigen* Positionen (mit grossen Schwankungen
der Bewertungsfunktion) ~~ quiescence search
e Beispiel Schach: Suche vertiefen, wenn Figurentausch
begonnen, aber nicht abgeschlossen wurde
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Zusammenfassung

@ Brettspiele kdnnen verstanden werden als Erweiterung
von klassischen Suchproblemen um einen Gegenspieler.

o Beide Spieler versuchen eine Endposition mit (fiir sie)
maximalem Nutzen zu erreichen.

@ Minimax ist ein Baumsuchalgorithmus, der perfekt spielt
(im Sinne der Spieltheorie), aber Aufwand O(b?) hat
(Verzweigungsgrad b, Suchtiefe d)

@ in der Praxis muss Suchtiefe oft begrenzt werden;
dann Anwendung von Bewertungsfunktionen
(meist Linearkombinationen von Features)
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