Grundlagen der Kiinstlichen Intelligenz

38. Brettspiele: Einfiihrung und Minimax-Suche

Malte Helmert

Universitat Basel

19. Mai 2014

Einordnung

Einordnung:

Brettspiele

Umgebung:

@ statisch vs.

@ deterministisch vs. VS.

vollstandig vs. VS. beobachtbar
o diskret vs.
° vs. mehrere Agenten (Gegenspieler)

Losungsansatz:

@ problemspezifisch vs. Vs.

Brettspiele: Uberblick

Kapiteliiberblick:
@ 38. Einfiihrung und Minimax-Suche
@ 39. Alpha-Beta-Suche und Ausblick

Einfiihrung

9000000000

Einfiihrung

Einfiihrung
0®00000000

Warum Brettspiele?

Brettspiele sind eines der altesten Gebiete der Kl
(Shannon, Turing 1950).

@ sehr abstrakte Form von Problem, leicht zu formalisieren
e bendtigen offensichtlich , Intelligenz" (oder?)

@ Traum von einer intelligenten Maschine, die Schach spielt,
ist dlter als der elektronische Computer

@ vgl. von Kempelens , Schachtiirke” (1769),
Torres y Quevedos ,, El Ajedrecista” (1912)

Einfiihrung
00®0000000

Eingrenzung

Wir betrachten Brettspiele mit folgenden Eigenschaften:
@ aktuelle Situation durch endliche Menge von Positionen
(= Zustanden) reprasentierbar
@ Situationsdnderungen durch endliche Menge von Ziigen
(= Aktionen) reprasentierbar
@ es gibt zwei Spieler, von denen in jeder Position

e einer am Zug ist
e oder es ist eine Endposition

o Endposition haben Nutzenbewertung

@ Nutzen von Spieler 2 immer Gegenteil von Nutzen
von Spieler 1 (Nullsummenspiel)

e ,endlose" Spielverldufe gelten als Remis (Nutzen 0)

kein Zufall, keine geheimen Informationen

Einfiihrung imax-Suche ertungsfunktionen
[e]e]eY Tolelelelelo)

Beispiel: Schach

Beispiel (Schach)
@ Positionen beschrieben durch:

e Stellung der Figuren
o Wer ist am Zug?
e en-passant- und Rochade-Rechte

@ Ziige gegeben durch Spielregeln

@ Endpositionen: Matt- und Patt-Stellungen der beiden Spieler
@ Nutzen der Endpositionen aus Sicht des ersten Spielers
(Weiss) zum Beispiel:
e +100 wenn Schwarz matt
e 0 bei Patt
o —100 wenn Weiss matt

Einfiihrung
0000®00000

Abgrenzungen

Wichtige Klassen von Spielen, die wir nicht beriicksichtigen:
e mit Zufall (z. B. Backgammon)
@ mit mehr als zwei Spielern (z. B. Halma)
@ mit verdeckter Information (z. B. Bridge)
@ mit gleichzeitigen Ziigen (z. B. Diplomacy)
@ ohne Nullsummeneigenschaft (,Spiele” aus der Spieltheorie
~ Auktionen, Wahlverfahren, Wirtschaft, Politik, .. .)
@ ... und viele weitere Generalisierungen

Viele dieser Spieltypen kdnnen mit dhnlichen/erweiterten
Algorithmen behandelt werden.

Einfiihrung
00000e0000

Formalisierung

Brettspiele gegeben durch Zustandsraume
S =(S,A, cost, T,sp,Ss) mit zwei Erweiterungen

@ Spielerfunktion player: S\ S, — {1,2} gibt an,
welcher der beiden Spieler am Zug ist

@ Nutzenfunktion v : S, — R gibt Nutzen
(aus Sicht von Spieler 1) in Endpositionen an.

sonstige Anderungen:

@ Aktionskosten cost werden nicht benétigt

(Wir haben 3hnliche Definitionen inzwischen oft gesehen
und gehen daher nicht weiter ins Detail.)

Einfiihrung
000000e000

Terminologie

Im Kontext von Brettspielen oft abweichende Begriffe fiir Dinge,
die wir bereits kennen:

@ Zustand, Zielzustand, etc. ~» Position, Endposition etc.
o Aktion ~» Zug

@ Suchbaum ~~ Spielbaum

Einfiihrung
0000000e00

Spezielle vs. allgemeine Algorithmen

@ Wir betrachten hier Verfahren, die fiir gute Performance
auf spezielle Brettspiele zugeschnitten werden miissen,
z. B. durch Implementierung einer geeigneten
Bewertungsfunktion.

~ vgl. Kapitel zu informierten Suchverfahren
@ analog zur Verallgemeinerung von Suchverfahren auf
deklarativ beschriebene Probleme (Handlungsplanung)
kdnnen auch Brettspiele in einem allgemeinen Rahmen

betrachtet werden, wo Spielregeln (Zustandsraume)
Teil der Eingabe sind

~» general game playing, jahrliche Wettbewerbe seit 2005

Einfiihrung
000000000

Warum sind Brettspiele schwierig?

Ebenso wie klassische Suchprobleme haben (interessante)
Brettspiele astronomisch grosse Zustandsraume:

@ Schach: ca. 10%° erreichbare Zustinde;
Partie mit 50 Ziigen/Spieler und Verzweigungsgrad 35:
Baumgrésse ca. 35190 ~ 10154

e Go: mehr als 10190 Zustinde;
Partie mit ca. 300 Ziigen, Verzweigungsgrad ca. 200:
Baumgrosse ca. 200300 ~ 10990

Einfiihrung
000000000

Warum sind Brettspiele schwierig?

Ebenso wie klassische Suchprobleme haben (interessante)
Brettspiele astronomisch grosse Zustandsraume:

@ Schach: ca. 10%° erreichbare Zustinde;
Partie mit 50 Ziigen/Spieler und Verzweigungsgrad 35:
Baumgrosse ca. 35100 ~ 10154

e Go: mehr als 10190 Zustinde;
Partie mit ca. 300 Ziigen, Verzweigungsgrad ca. 200:
Baumgrosse ca. 200300 ~ 10990

Dazu kommt, dass es nicht mehr reicht,
einen Losungspfad zu finden:

@ bendtigt wird eine Strategie, die auf alle moglichen
Verhaltensweisen des Gegners reagiert

@ (blicherweise implementiert als Algorithmus,
der ,,on demand” den nachsten Zug liefert

Einfiihrung
©000000000e

Algorithmen fiir Brettspiele

Gute Algorithmen fiir Brettspiele:
@ sehen moglichst weit voraus (tiefe Suche)

@ betrachten nur interessante Teile des Spielbaums
(selektive Suche, analog zu heuristischen Suchverfahren)

@ nehmen moglichst genaue Bewertung von Positionen vor
(Evaluationsfunktionen, analog zu Heuristiken)

Minimax-Suche

Minimax-Suche
0®00000

Terminologie fiir Zwei-Personen-Spiele

@ Spieler werden traditionell MAX und MIN genannt.

o Wir wollen Ziige fiir MAX berechnen
(MIN ist der Gegner).

@ MAX versucht seinen Nutzen in der erreichten Endposition
(gegeben durch die Funktion u) zu maximieren.

@ MIN versucht u zu minimieren (was MINs Nutzen maximiert)

Minimax-Suche
00®0000

Beispiel: Tic-Tac-Toe

MAX ()
MIN (o)
MAX (x)

MIN (o)

TERMINAL [[olx] [o]
O
utity -1 0 +1

@ Spielbaum mit Spieler am Zug (MAX/MIN) links markiert
@ in letzter Reihe Endpositionen mit ihrem Nutzen

@ Grosse des Spielbaums?

Minimax-Suche
000®000

Minimax: Berechnung

1. Tiefensuche durch den Spielbaum
2. Wende Nutzenfunktion auf Endpositionen an.
3. Von unten nach oben durch den Baum berechne Nutzen
von inneren Knoten wie folgt:
o MIN ist am Zug:
Nutzen ist Minimum der Nutzenwerte der Kinder
o MAX ist am Zug:
Nutzen ist Maximum der Nutzenwerte der Kinder
4. Zugauswahl fiir MAX in der Wurzel:
wahle einen Zug, der den berechneten Nutzenwert maximiert
(Minimax-Entscheidung)

Minimax-Suche
000000

Minimax: Beispiel

MAX

MIN

Minimax-Suche
00000e0

Minimax: Diskussion

@ Minimax ist der einfachste (brauchbare) Spielsuchalgorithmus

e Fiihrt zu optimaler Strategie® (im Sinne der Spieltheorie,
d. h. unter Annahme perfekter Gegenwehr), ist aber fiir
komplexe Spiele zu zeitaufwindig.

o Egal, wie der Gegner spielt, wird mindestens
der fiir die Wurzel berechnete Nutzenwert erreicht.

@ Spielt der Gegner perfekt, wird genau dieser Wert erreicht.

(*) bei Spielen, die nicht in Zyklen geraten kdnnen;
ansonsten wird es komplizierter (da der Baum unendlich wird)

Minimax-Suche
©000000e

Minimax: Pseudo-Code

(geht von alternierender Spielerreihenfolge aus)

function MINIMAX -DECISIONstate) returns an action
returnargmax, . Actionss) MIN-VALUE(RESULT(state, a))

function MAX -VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
V<4 —00
for each a in ACTIONS(state) do
v < MAX (v, MIN-VALUE(RESULT(s, a)))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
(R e'e]
for each a in ACTIONS(state) do
v <~ MIN(v, MAX-VALUE(RESULT(s, a)))
return v

Was, wenn der Spielbaum zu gross fiir Minimax ist?
~~ approximieren durch Bewertungsfunktionen

Bewertungsfunktionen

@000

Bewertungsfunktionen

Bewertungsfunktionen mmenfassung
0e00

Bewertungsfunktionen

@ Problem: Spielbaum zu gross

@ |dee: suche nur bis zu einer bestimmten Tiefe

@ wenn diese Tiefe erreicht ist, schatze den Nutzen anhand
heuristischer Kriterien (als wére eine Endposition erreicht)

Beispiel (Bewertungsfunktion in Schach)

e Material: Bauer 1, Springer 3, Laufer 3, Turm 5, Dame 9
positives Vorzeichen fiir Figuren von MAX, negatives bei MIN

@ Bauernstruktur, Mobilitat, ...

Daumenregel: 3-Punkte-Vorteil ~~ sicherer Sieg

Gute Bewertungsfunktionen sind entscheidend!

@ Hohe Werte sollten hohen ,,Gewinnchancen" entsprechen,
damit Verfahren gut funktioniert.

@ Gleichzeitig sollte Bewertung schnell berechnet werden,
um tief suchen zu konnen.

Bewertungsfunktionen
fe]e] ol

Lineare Bewertungsfunktionen

Am h&ufigsten werden gewichtete lineare Funktionen verwendet:
wifi + wof + - - - + wpf,

wobei die w; Gewichte und und die f; Features sind.
@ enthdlt Annahme, dass Beitrdge der Features unabhingig sind
(normalerweise falsch, aber vertretbar)

@ erlaubt effiziente inkrementelle Berechnung,
wenn Features sich nicht in jedem Zug dndern

o Gewichte kdnnen automatisch gelernt werden

o Features stammen (in der Regel) von menschlichen Experten

Bewertungsfunktionen
oooe

Wie tief suchen?

@ Ziel: In gegebener Bedenkzeit moglichst tief suchen
@ Problem: Suchzeit schwer vorherzusehen

@ Losung: iteratives Vertiefen

o Abfolge von Suchen, die immer tiefer gehen
o Zeit lauft ab: liefere Ergebnis letzter abgeschlossener Suche

Bewertungsfunktionen
oooe

Wie tief suchen?

@ Ziel: In gegebener Bedenkzeit moglichst tief suchen

@ Problem: Suchzeit schwer vorherzusehen
@ Losung: iteratives Vertiefen
o Abfolge von Suchen, die immer tiefer gehen
o Zeit lauft ab: liefere Ergebnis letzter abgeschlossener Suche
@ Verfeinerung: Suchtiefe nicht uniform, sondern tiefer
in ,,unruhigen* Positionen (mit grossen Schwankungen
der Bewertungsfunktion) ~~ quiescence search
e Beispiel Schach: Suche vertiefen, wenn Figurentausch
begonnen, aber nicht abgeschlossen wurde

Zusammenfassung

Zusammenfassung
oe

Zusammenfassung

@ Brettspiele kdnnen verstanden werden als Erweiterung
von klassischen Suchproblemen um einen Gegenspieler.

o Beide Spieler versuchen eine Endposition mit (fiir sie)
maximalem Nutzen zu erreichen.

@ Minimax ist ein Baumsuchalgorithmus, der perfekt spielt
(im Sinne der Spieltheorie), aber Aufwand O(b?) hat
(Verzweigungsgrad b, Suchtiefe d)

@ in der Praxis muss Suchtiefe oft begrenzt werden;
dann Anwendung von Bewertungsfunktionen
(meist Linearkombinationen von Features)

	Einführung
	Minimax-Suche
	Bewertungsfunktionen
	Zusammenfassung

