Grundlagen der Kiinstlichen Intelligenz
28. Aussagenlogik: DPLL-Algorithmus

Malte Helmert

Universitat Basel

2. Mai 2014

Aussagenlogik: Uberblick

Kapiteliiberblick Aussagenlogik:
@ 26. Grundlagen
@ 27. Logisches Schliessen und Resolution
e 28. DPLL-Algorithmus
@ 29. Lokale Suche und Ausblick

Motivation

Motivation
0@000

Motivation fiir Aussagenlogik

o Aussagenlogik erlaubt Reprasentation von Wissen
und Schlussfolgerungen auf Grundlage dieses Wissens
@ viele Anwendungsprobleme direkt kodierbar, z. B.:
e Constraint-Satisfaction-Probleme aller Art
e Schaltkreisentwurf und -verifikation
@ viele Probleme verwenden Logik als einen Bestandteil, z. B.:

e Handlungsplanung
o General Game Playing
o Beschreibungslogik-Anfragen (Semantic Web)

Motivation
[e]e] Yolo)

Aussagenlogik: algorithmische Fragestellungen

wesentliche Fragestellungen:

@ Schlussfolgern (© = ¢7):

Folgt aus Formeln © die Formel ¢ logisch?
o Aquivalenz (p = v):

Sind Formeln ¢ und 1 logisch dquivalent?

e Erfiillbarkeit (SAT):
Ist Formel ¢ erfiillbar? Falls ja, finde eine erfiillende Belegung.

Motivation S Suche DPLL auf Hornformeln Zusammenfassung
000®0 5 0000

Das Erfiillbarkeitsproblem

Das Erfiillbarkeitsproblem (SAT)

Gegeben:
aussagenlogische Formel in konjunktiver Normalform (KNF)

Ublicherweise reprisentiert als Paar (V, A):
@ V Menge von Aussagevariablen (Propositionen)

@ A Menge von Klauseln liber V
(Klausel = Menge von Literalen v bzw. =v mit v € V)

Gesucht:
o erfiillende Belegung der Formel (Modell)

@ oder Beweis, dass keine erfiillende Belegung existiert

SAT ist ein beriihmtes NP-vollstindiges Problem
(Cook 1971; Levin 1973).

Motivation
0000e

Relevanz von SAT

@ Unter SAT versteht man oft auch das Erfiillbarkeitsproblem
fiir allgemeine Logikformeln (statt Einschrankung auf KNF).

o Allgemeines SAT ist auf den KNF-Fall zuriickfiihrbar
(Aufwand fiir Umformung ist O(n))

@ Alle zuvor genannten Logikprobleme sind auf SAT
zuriickfiihrbar (Aufwand fiir Umformung ist O(n))

~~ SAT-Algorithmen sehr wichtig und sehr intensiv erforscht

dieses und nachstes Kapitel: SAT-Algorithmen

Systematische Suche: DPLL

90000000

Systematische Suche: DPLL

Systematische Suche: DPLL
0®000000

SAT vs. CSP

SAT kann als Constraint-Satisfaction-Problem aufgefasst werden:
@ CSP-Variablen = Aussagevariablen
@ Wertebereiche = {F, T}
@ Constraints = Klauseln
Allerdings haben wir hier oft Constraints,
die mehr als zwei Variablen betreffen.
Wegen Verwandtschaft alle CSP-ldeen auf SAT anwendbar:
@ Suche
@ Inferenz

@ Variablen- und Werteordnungen

Systematische Suche: DPLL
00®00000

Der DPLL-Algorithmus

Der DPLL-Algorithmus (Davis/Putnam/Logemann/Loveland)
entspricht Backtracking mit Inferenz bei CSPs.

o rekursiver Aufruf DPLL(A, /)
fiir Klauselmenge A und partielle Belegung /

@ Ergebnis ist erfiillende Belegung, die | erweitert;
unsatisfiable, wenn keine solche Belegung existiert

@ oberster Aufruf als DPLL(A, 0)

Inferenz in DPLL:

@ simplify: nachdem der Variablen v der Wert d zugewiesen
wird, werden alle Klauseln vereinfacht, die iiber v sprechen
~~ entspricht Forward Checking (fiir mehrstellige Constraints)

@ Unit Propagation: Variablen, die in Klauseln ohne weitere

Variablen (Einheitsklauseln) auftreten, werden sofort belegt
(entspricht minimum remaining values-Variablenordnung)

Systematische Suche: DPLL DPLL auf Hornformeln
000®0000 0000

Der DPLL-Algorithmus: Pseudo-Code

function DPLL(A, /):

if 0e A: [Es gibt eine leere Klausel ~~ unerfiillbar]
return unsatisfiable

else if A =0: [keine Klauseln iibrig ~~ Belegung [erfiillt die Formel]
return /

else if there exists a unit clause {v} or {=v} in A: [Unit Propagation]
Let v be such a variable, d the truth value that satisfies the clause.
A" = simplify(A, v, d)
return DPLL(V, A’/ U {v — d})
else: [Splitting Rule]
Select some variable v which occurs in A.
for each d € {F, T} in some order:
A" = simplify(A, v, d)
I':= DPLL(V, A", 1 U {v — d})
if I’ # unsatisfiable
return /'
return unsatisfiable

Systematische Suche: DPLL
0000®000

Der DPLL-Algorithmus: simplify

function simplify(A, v, d)

Let ¢ be the literal on v that is satisfied by v — d.
Let 7 be the complementary (opposite) literal to £.
A'={C|CeAst. l¢C}

A" :={C\{l}| CeA}

return A"

Systematische Suche: DPLL
00000e00

Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

Systematische Suche: DPLL
00000e00

Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T

Systematische Suche: DPLL
00000e00

Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}

Systematische Suche: DPLL
00000e00

Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:

Systematische Suche: DPLL
00000e00

Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}
1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:

2a. X —F
{yh{-Y}}

Systematische Suche: DPLL
00000e00

Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{X Y EA{X Y EA{X ~Y})
2. Splitting Rule:
2a. X —F
{Yh{=-v}
3a. Unit Propagation: Y — T
{00}

Systematische Suche: DPLL
00000e00

Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:
2a. X—F 2b. X —= T
{Yyh{-v}} {{=Y}}

3a. Unit Propagation: Y — T
{00}

Systematische Suche: DPLL
00000e00

Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:

2a. X —F 2b. X — T
{YrL{=-Y}} {=Y}}
3a. Unit Propagation: Y — T 3b. Unit Propagation: Y — F

{0} {

Systematische Suche: DPLL
00000e00

Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:

2a. X —F 2b. X — T
{YrL{=-Y}} {=Y}}
3a. Unit Propagation: Y — T 3b. Unit Propagation: Y — F

{0} {

Systematische Suche: DPLL
00000080

Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

Systematische Suche: DPLL
00000080

Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T

Systematische Suche: DPLL
00000080

Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{W, =X, =Y} {X}1L{Y}}

Systematische Suche: DPLL
00000080

Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{{W, =X, =Y} {X}{Y}}
2. Unit Propagation: X — T

{w, =Y} {Y}}

Systematische Suche: DPLL
00000080

Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{{W’ —X, _‘Y}7 {X}7 {Y}}

2. Unit Propagation: X — T
{W, =Y} Y}

3. Unit Propagation: Y — T
{w}}

Systematische Suche: DPLL
00000080

Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{{W’ —X, _‘Y}7 {X}7 {Y}}

2. Unit Propagation: X — T
{W, =Y} Y}

3. Unit Propagation: Y — T
{w}}

4. Unit Propagation: W — T

{

Systematische Suche: DPLL
00000080

Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{{W’ —X, _‘Y}7 {X}7 {Y}}

2. Unit Propagation: X — T
{W, =Y} Y}

3. Unit Propagation: Y — T
{w}}

4. Unit Propagation: W +— T

{

Systematische Suche: DPLL
©0000000e

Eigenschaften von DPLL

o DPLL ist korrekt und vollstandig.
@ DPLL erzeugt ein Modell, falls eines existiert.

o Manche Variablen werden evtl. in der Losung | nicht belegt;
deren Werte kénnen dann beliebig gewahlt werden.

o Zeitaufwand im Allgemeinen exponentiell

~ gute Variablenordnungen in der Praxis wichtig;
ebenso zusatzliche Inferenzmethoden, v.a. clause learning

@ beste bekannte SAT-Algorithmen basieren auf DPLL

DPLL auf Hornformeln

@000

DPLL auf Hornformeln

DPLL auf Hornformeln
o®00

Hornformeln

wichtiger Spezialfall: Hornformeln

Definition (Hornformel)

Eine Hornklausel ist eine Klausel
mit maximal einem positivem Literal, also von der Form

—x1 V-V ox, Vy oder —xg V- Vooxg

(Der Fall n =0 ist erlaubt.)

Eine Hornformel ist eine aussagenlogische Formel
in konjunktiver Normalform, die nur aus Hornklauseln besteht.

~ Grundlage von Logikprogrammierung (z.B. PROLOG)
und deduktiven Datenbanken

DPLL auf Hornformeln Zusammenfassung
lele] lo} oo

DPLL auf Hornformeln

Satz (DPLL auf Hornformeln)

Wenn die Eingabeformel ¢ eine Hornformel ist, dann ist
der Zeitaufwand von DPLL polynomiell in der Lange von .

Beweis.

| A

Eigenschaften:

1. Wenn A eine Hornformel ist, dann ist auch simplify(A, v, d)
eine Hornformel. (\Warum?)
~ alle wahrend der Suche von DPLL betrachteten Formeln
sind Hornformeln, wenn die Eingabe es ist

2. Jede Hornformel ohne leere oder Einheitsklauseln ist erfiillbar:

o alle solchen Klauseln enthalten mindestens zwei Literale
o da Horn: mindestens eines davon negativ
e Zuweisung F an alle Variablen erfiillt die Formel

DPLL auf Hornformeln
ocooe

DPLL auf Hornformeln (Fortsetzung)

Beweis (Fortsetzung).
3. Aus 2. folgt:

e immer, wenn die Splitting Rule angewandt wird,
ist die aktuelle Formel erfiillbar, und
e immer, wenn dabei eine falsche Entscheidung getroffen wird,
wird dies sofort (d. h. nur durch Unit-Propagation-Schritte
und Herleiten einer leeren Klausel) erkannt.
4. Deshalb kann der erzeugte Suchbaum fiir n Variablen
nur maximal n viele Knoten enthalten, in denen
die Splitting Rule angewandt wird (und der Baum verzweigt).

5. Damit ist der Suchbaum nur polynomiell gross
und folglich die Gesamtlaufzeit polynomiell.

Zusammenfassung

Zusammenfassung
oe

Zusammenfassung

o Erfiillbarkeit grundlegendes Problem der Aussagenlogik,
auf das andere Probleme zuriickgefiihrt werden kénnen

o hier: Erfiillbarkeit fiir KNF-Formeln
e David-Putnam-Logemann-Loveland-Prozedur (DPLL):

systematische Backtracking-Suche mit Unit Propagation
als wesentlicher Inferenzmethode

@ praktisch erfolgreicher Algorithmus, vor allem
in Kombination mit weiteren ldeen wie clause learning

@ polynomiell auf Horn-Formeln
(= max. ein positives Literal pro Klausel)

	Motivation
	Systematische Suche: DPLL
	DPLL auf Hornformeln
	Zusammenfassung

