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Aussagenlogik: Uberblick

Kapiteliiberblick Aussagenlogik:
@ 26. Grundlagen
@ 27. Logisches Schliessen und Resolution
e 28. DPLL-Algorithmus
@ 29. Lokale Suche und Ausblick
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Motivation fiir Aussagenlogik

o Aussagenlogik erlaubt Reprasentation von Wissen
und Schlussfolgerungen auf Grundlage dieses Wissens
@ viele Anwendungsprobleme direkt kodierbar, z. B.:
e Constraint-Satisfaction-Probleme aller Art
e Schaltkreisentwurf und -verifikation
@ viele Probleme verwenden Logik als einen Bestandteil, z. B.:

e Handlungsplanung
o General Game Playing
o Beschreibungslogik-Anfragen (Semantic Web)
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Aussagenlogik: algorithmische Fragestellungen

wesentliche Fragestellungen:

@ Schlussfolgern (© = ¢7):

Folgt aus Formeln © die Formel ¢ logisch?
o Aquivalenz (p = v):

Sind Formeln ¢ und 1 logisch dquivalent?

e Erfiillbarkeit (SAT):
Ist Formel ¢ erfiillbar? Falls ja, finde eine erfiillende Belegung.
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Das Erfiillbarkeitsproblem

Das Erfiillbarkeitsproblem (SAT)

Gegeben:
aussagenlogische Formel in konjunktiver Normalform (KNF)

Ublicherweise reprisentiert als Paar (V, A):
@ V Menge von Aussagevariablen (Propositionen)

@ A Menge von Klauseln liber V
(Klausel = Menge von Literalen v bzw. =v mit v € V)

Gesucht:
o erfiillende Belegung der Formel (Modell)

@ oder Beweis, dass keine erfiillende Belegung existiert

SAT ist ein beriihmtes NP-vollstindiges Problem
(Cook 1971; Levin 1973).
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Relevanz von SAT

@ Unter SAT versteht man oft auch das Erfiillbarkeitsproblem
fiir allgemeine Logikformeln (statt Einschrankung auf KNF).

o Allgemeines SAT ist auf den KNF-Fall zuriickfiihrbar
(Aufwand fiir Umformung ist O(n))

@ Alle zuvor genannten Logikprobleme sind auf SAT
zuriickfiihrbar (Aufwand fiir Umformung ist O(n))

~~ SAT-Algorithmen sehr wichtig und sehr intensiv erforscht

dieses und nachstes Kapitel: SAT-Algorithmen
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Systematische Suche: DPLL



Systematische Suche: DPLL
0®000000

SAT vs. CSP

SAT kann als Constraint-Satisfaction-Problem aufgefasst werden:
@ CSP-Variablen = Aussagevariablen
@ Wertebereiche = {F, T}
@ Constraints = Klauseln
Allerdings haben wir hier oft Constraints,
die mehr als zwei Variablen betreffen.
Wegen Verwandtschaft alle CSP-ldeen auf SAT anwendbar:
@ Suche
@ Inferenz

@ Variablen- und Werteordnungen
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Der DPLL-Algorithmus

Der DPLL-Algorithmus (Davis/Putnam/Logemann/Loveland)
entspricht Backtracking mit Inferenz bei CSPs.

o rekursiver Aufruf DPLL(A, /)
fiir Klauselmenge A und partielle Belegung /

@ Ergebnis ist erfiillende Belegung, die | erweitert;
unsatisfiable, wenn keine solche Belegung existiert

@ oberster Aufruf als DPLL(A, 0)

Inferenz in DPLL:

@ simplify: nachdem der Variablen v der Wert d zugewiesen
wird, werden alle Klauseln vereinfacht, die iiber v sprechen
~~ entspricht Forward Checking (fiir mehrstellige Constraints)

@ Unit Propagation: Variablen, die in Klauseln ohne weitere

Variablen (Einheitsklauseln) auftreten, werden sofort belegt
(entspricht minimum remaining values-Variablenordnung)
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Der DPLL-Algorithmus: Pseudo-Code

function DPLL(A, /):

if 0e A: [Es gibt eine leere Klausel ~~ unerfiillbar]
return unsatisfiable

else if A =0: [keine Klauseln iibrig ~~ Belegung [ erfiillt die Formel]
return /

else if there exists a unit clause {v} or {=v} in A: [Unit Propagation]
Let v be such a variable, d the truth value that satisfies the clause.
A" = simplify(A, v, d)
return DPLL(V, A’/ U {v — d})
else: [Splitting Rule]
Select some variable v which occurs in A.
for each d € {F, T} in some order:
A" = simplify(A, v, d)
I':= DPLL(V, A", 1 U {v — d})
if I’ # unsatisfiable
return /'
return unsatisfiable
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Der DPLL-Algorithmus: simplify

function simplify(A, v, d)

Let ¢ be the literal on v that is satisfied by v — d.
Let 7 be the complementary (opposite) literal to £.
A'={C|CeAst. l¢C}

A" :={C\{l}| CeA}

return A"
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}
1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:

2a. X —F
{yh{-Y}}
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{X Y EA{X Y EA{X ~Y})
2. Splitting Rule:
2a. X —F
{Yh{=-v}
3a. Unit Propagation: Y — T
{00}
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:
2a. X—F 2b. X —= T
{Yyh{-v}} {{=Y}}

3a. Unit Propagation: Y — T
{00}
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:

2a. X —F 2b. X — T
{YrL{=-Y}} {=Y}}
3a. Unit Propagation: Y — T 3b. Unit Propagation: Y — F

{0} {
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:

2a. X —F 2b. X — T
{YrL{=-Y}} {=Y}}
3a. Unit Propagation: Y — T 3b. Unit Propagation: Y — F

{0} {
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Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}
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Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T



Systematische Suche: DPLL
00000080

Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{W, =X, =Y} {X}1L{Y}}
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Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{{W, =X, =Y} {X}{Y}}
2. Unit Propagation: X — T

{w, =Y} {Y}}
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Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{{W’ —X, _‘Y}7 {X}7 {Y}}

2. Unit Propagation: X — T
{W, =Y} Y}

3. Unit Propagation: Y — T
{w}}
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Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{{W’ —X, _‘Y}7 {X}7 {Y}}

2. Unit Propagation: X — T
{W, =Y} Y}

3. Unit Propagation: Y — T
{w}}

4. Unit Propagation: W — T

{
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Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{{W’ —X, _‘Y}7 {X}7 {Y}}

2. Unit Propagation: X — T
{W, =Y} Y}

3. Unit Propagation: Y — T
{w}}

4. Unit Propagation: W +— T

{
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Eigenschaften von DPLL

o DPLL ist korrekt und vollstandig.
@ DPLL erzeugt ein Modell, falls eines existiert.

o Manche Variablen werden evtl. in der Losung | nicht belegt;
deren Werte kénnen dann beliebig gewahlt werden.

o Zeitaufwand im Allgemeinen exponentiell

~ gute Variablenordnungen in der Praxis wichtig;
ebenso zusatzliche Inferenzmethoden, v.a. clause learning

@ beste bekannte SAT-Algorithmen basieren auf DPLL
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DPLL auf Hornformeln



DPLL auf Hornformeln
o®00

Hornformeln

wichtiger Spezialfall: Hornformeln

Definition (Hornformel)

Eine Hornklausel ist eine Klausel
mit maximal einem positivem Literal, also von der Form

—x1 V-V ox, Vy oder —xg V- Vooxg

(Der Fall n =0 ist erlaubt.)

Eine Hornformel ist eine aussagenlogische Formel
in konjunktiver Normalform, die nur aus Hornklauseln besteht.

~ Grundlage von Logikprogrammierung (z.B. PROLOG)
und deduktiven Datenbanken
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DPLL auf Hornformeln

Satz (DPLL auf Hornformeln)

Wenn die Eingabeformel ¢ eine Hornformel ist, dann ist
der Zeitaufwand von DPLL polynomiell in der Lange von .

Beweis.

| A

Eigenschaften:

1. Wenn A eine Hornformel ist, dann ist auch simplify(A, v, d)
eine Hornformel. (\Warum?)
~ alle wahrend der Suche von DPLL betrachteten Formeln
sind Hornformeln, wenn die Eingabe es ist

2. Jede Hornformel ohne leere oder Einheitsklauseln ist erfiillbar:

o alle solchen Klauseln enthalten mindestens zwei Literale
o da Horn: mindestens eines davon negativ
e Zuweisung F an alle Variablen erfiillt die Formel
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DPLL auf Hornformeln (Fortsetzung)

Beweis (Fortsetzung).
3. Aus 2. folgt:

e immer, wenn die Splitting Rule angewandt wird,
ist die aktuelle Formel erfiillbar, und
e immer, wenn dabei eine falsche Entscheidung getroffen wird,
wird dies sofort (d. h. nur durch Unit-Propagation-Schritte
und Herleiten einer leeren Klausel) erkannt.
4. Deshalb kann der erzeugte Suchbaum fiir n Variablen
nur maximal n viele Knoten enthalten, in denen
die Splitting Rule angewandt wird (und der Baum verzweigt).

5. Damit ist der Suchbaum nur polynomiell gross
und folglich die Gesamtlaufzeit polynomiell.
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Zusammenfassung

o Erfiillbarkeit grundlegendes Problem der Aussagenlogik,
auf das andere Probleme zuriickgefiihrt werden kénnen

o hier: Erfiillbarkeit fiir KNF-Formeln
e David-Putnam-Logemann-Loveland-Prozedur (DPLL):

systematische Backtracking-Suche mit Unit Propagation
als wesentlicher Inferenzmethode

@ praktisch erfolgreicher Algorithmus, vor allem
in Kombination mit weiteren ldeen wie clause learning

@ polynomiell auf Horn-Formeln
(= max. ein positives Literal pro Klausel)
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