Grundlagen der Kunstlichen Intelligenz
21. Constraint-Satisfaction-Probleme: Backtracking

Malte Helmert

Universitat Basel

11. April 2014



Constraint-Satisfaction-Probleme: Uberblick

Kapiteliiberblick Constraint-Satisfaction-Probleme:
@ 19.-20. Einfiihrung
@ 21.-23. Kernalgorithmen

e 21. Backtracking
o 22. Kantenkonsistenz
o 23. Pfadkonsistenz

@ 24 -25. Problemstruktur



CSP-Algorithmen



CSP-Algorithmen
oce

CSP-Algorithmen

In den folgenden Kapiteln betrachten wir Losungsalgorithmen

fiir Constraint-Netze.

Grundkonzepte:
@ Suche: systematisches Ausprobieren von partiellen Belegungen
@ Backtracking: Verwerfen inkonsistenter partieller Belegungen

@ Inferenz: Herleiten scharferer dquivalenter Constraints,
um Suchraum zu verkleinern (Backtracking frither moglich)
~ folgende Kapitel



Naives Backtracking



Algorithmen Naives Backtracking \ 1d Wertordnungen
000000

Naives Backtracking (= ohne Inferenz)

function NaiveBacktracking(C, «):
(V,dom,(Ry)) :=C

if « is inconsistent with C:
return inconsistent

if « is a total assignment:
return o

select some variable v for which « is not defined

for each d € dom(v) in some order:
o =aU{ve—d}
o := NaiveBacktracking(C, &)
if o’ # inconsistent:
return o
return inconsistent

Eingabe: Constraint-Netz C und partielle Belegung o von C
(erster Aufruf: die leere Belegung o = ()

Ergebnis: Losung von C oder inconsistent



Naives Backtracking
fe]e] Yololele}

Ist das ein neuer Algorithmus?

Wir haben diesen Algorithmus schon gesehen:
Backtracking entspricht Tiefensuche (vgl. Kapitel 9)
mit folgendem Zustandsraum:

Zustande: konsistente partielle Belegungen
Anfangszustand: leere Belegung ()

Zielzustande: konsistente totale Belegungen

Aktionen: assign, 4 weist Variable v Wert d € dom(v) zu

Aktionskosten: alle 0 (alle Lésungen gleich gut)

Transitionen:

e fiir jede nicht-totale Belegung o wahle Variable

v = selected(a), die in « unbelegt ist
assign, 4

o Transition « ——= a U {v > d} fiir alle d € dom(v)



Naives Backtracking
[e]e]eY Tolele}

Warum Tiefensuche?

Tiefensuche ist fiir CSPs besonders geeignet:
e Pfadlange beschrankt (durch Anzahl Variablen)
@ Alle Losungen in derselben Tiefe (in unterster Suchebene)

@ Zustandsraum gerichteter Baum,
Anfangszustand ist Wurzel ~~ keine Duplikate (Warum?)

Somit tritt keiner der fiir Tiefensuche problematischen Fille auf.



Naives Backtracking
0000800

Naives Backtracking: Beispiel

Betrachte das Constraint-Netz fiir folgendes
Graphfiarbungsproblem:

Vi

V7
Vs




Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, vy, va, vs, V6, V3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)




Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, vy, va, vs, V6, V3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

! b./.




Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, vy, va, vs, V6, V3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)




Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, vy, va, vs, V6, V3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)




Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, vy, va, vs, V6, V3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)




Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, vy, va, vs, V6, V3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)




Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, vy, va, vs, V6, V3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)




Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, vy, va, vs, V6, V3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)




Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, vy, va, vs, V6, V3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)




Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, vy, va, vs, V6, V3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)




Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, vy, va, vs, V6, V3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)




Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, vy, va, vs, V6, V3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)




Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, vy, va, vs, V6, V3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)




Naives Backtracking
000000

Naives Backtracking: Diskussion

@ Naives Backtracking muss oft dhnliche Suchpfade
(partielle Belegungen gleich bis auf wenige Variablen)
erschopfend durchsuchen.

o ,Kritische" Variablen nicht erkannt, daher (zu) spat belegt
@ Entscheidungen, die spater zwangslaufig

zu Constraint-Verletzungen fiihren, werden erst erkannt,
wenn alle beteiligten Variablen belegt wurden

~> mehr Intelligenz durch Fokus auf kritischen Entscheidungen
und Inferenz von Konsequenzen der bisherigen Entscheidungen



Variablen- und Wertordnungen



Variablen- und Wertordnungen
0®0000

Naives Backtracking

function NaiveBacktracking(C
(V,dom,(Ry)) :=C

if o is inconsistent with C:
return inconsistent

if « is a total assignment:
return o

select some variable v for which « is not defined

for each d € dom(v) in some order:
o =aU{v—d}
o' := NaiveBacktracking(C, o)
if o/ # inconsistent:
return o
return inconsistent




Variablen- und Wertordnungen
00®000

Variablen- und Wertordnungen

Variablenordnung:
o Backtracking lasst offen, in welcher Reihenfolge
Variablen belegt werden
@ beeinflusst oft dramatisch die Grosse des Suchraums
und damit die Performance der Suche
~~ Beispiel: Ubungsaufgaben

Wertordnung:

o Backtracking lasst ebenfalls offen, in welcher Reihenfolge
die Werte der ausgewahlten Variable v betrachtet werden

@ nicht ganz so wichtig, da in Teilbdumen ohne Ldsung
nicht von Belang (Warum nicht?)

@ wenn Losung im Teilbaum existiert, sollte
nach Moglichkeit zunachst Wert ausgewahlt werden,
der zur Loésung fithrt (Warum?)



Variablen- und Wertordnungen
000®00

Statische vs. dynamische Ordnungen

Wir unterscheiden:
@ statische Ordnungen (im Voraus festgelegt)

e dynamische Ordnungen (ausgewahlte Variable/
ausgewahlte Wertordnung hangt vom Suchzustand ab)

Vergleich:

@ dynamische Ordnungen offensichtlich machtiger

@ statische Ordnungen verursachen dafiir keinen Overhead
wahrend der Suche

Die folgenden Ordnungen kdnnen statisch vorgenommen werden,
sind aber effektiver, wenn man sie mit Inferenz (~~ spater)
kombiniert und dynamisch auswertet.



Variablen- und Wertordnungen
0000®0

Variablenordnungen

Zwei haufige Kriterien zur Variablenordnung:
@ Minimum Remaining Values: wahle zuerst Variablen aus,
deren Wertebereich moglichst klein ist

o Intuition: wenige Teilbdume ~~ kleiner Baum
o Extremfall: nur ein Wert ~» erzwungene Belegung

@ Most Constraining Variable: wahle zuerst Variablen aus,
die an moglichst vielen nichttrivialen Constraints beteiligt sind

e Intuition: Constraints moglichst friih testen
~ friih Inkonsistenzen erkennen ~~ kleiner Baum
Kombination: verwende Minimum-Remaining-Values-Kriterium,
dann Most-Constraining-Variable-Kriterium zum Tie-Breaking



Variablen- und Wertordnungen
00000e

Wertordnungen

Definition (Konflikt)

Sei C = (V,dom, (Ry/)) ein Constraint-Netz.
Fiir Variablen v # v/ und Werte d € dom(v), d’ € dom(v') steht
v — d im Konflikt mit v/ — d’, falls (d, d’) ¢ R,,.

Kriterium zur Wertordnung fiir partielle Belegung «
und ausgewahlte Variable v:

e Minimum Conflicts: Bevorzuge Werte d € dom(v),
fiir die v — d an moglichst wenigen Konflikten
mit in « unbelegten Variablen beteiligt ist.



Zusammenfassung



Zusammenfassung
oeo

Zusammenfassung: Backtracking

grundlegender Suchalgorithmus fiir Constraint-Netze: Backtracking

e erweitere (anfanglich leere) partielle Belegung schrittweise,
bis Inkonsistenz oder Lésung gefunden

@ ist eine Form der Tiefensuche

@ Tiefensuche hier besonders geeignet,
da der Zustandsraum ein gerichteter Baum ist
und alle Lésungen in derselben, a priori bekannten Tiefe liegen



Zusammenfassung
ooe

Zusammenfassung: Variablen- und Wertordnungen

@ Variablenordnungen beeinflussen die Performanz
von Backtracking massgeblich

o Ziel: kritische Entscheidungen moglichst friih
@ Wertordnungen beeinflussen die Performanz
von Backtracking auf |6sbaren Constraint-Netzen massgeblich
o Ziel: viel versprechende Belegungen zuerst



	CSP-Algorithmen
	Naives Backtracking
	Variablen- und Wertordnungen
	Zusammenfassung

