
Grundlagen der Künstlichen Intelligenz
17. Klassische Suche: A∗: Vollständigkeit und Komplexität

Malte Helmert

Universität Basel

4. April 2014

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Klassische Suche: Überblick

Kapitelüberblick klassische Suche:

3.–5. Einführung

6.–9. Basisalgorithmen

10.-17. heuristische Algorithmen

10. Heuristiken
11. Analyse von Heuristiken
12. Bestensuche als Graphensuche
13. Gierige Bestensuche, A∗, Weighted A∗

14. IDA∗

15. A∗: Optimalität, Teil I
16. A∗: Optimalität, Teil II
17. A∗: Vollständigkeit und Komplexität

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Vollständigkeit

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Vollständigkeit von A∗

Vollständigkeit von A∗:

A∗ ist vollständig für sichere Heuristiken
(wie andere Bestensuchalgorithmen als Graphensuche)

Anders als gierige Bestensuche ist A∗ mit sicheren Heuristiken
immer noch semi-vollständig, wenn keine Duplikateliminierung
durchgeführt wird und alle Aktionskosten grösser als 0 sind.
(Warum?)

Das ist sogar für unendliche Zustandsräume wahr
(in dieser Vorlesung nicht betrachtet),
wenn jeder Zustand endlich viele Nachfolger hat
und das Infimum der Aktionskosten grösser als 0 ist.

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Zeit- und Speicheraufwand von A∗

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Zeitaufwand von A∗ (1)

Was ist der Zeitaufwand von A∗?

hängt stark von der Qualität der Heuristik ab

ein Extremfall: h = 0 für alle Zustände

 A∗ identisch mit uniformer Kostensuche

ein anderer Extremfall: h = h∗ und cost(a) > 0
für alle Aktionen a

 A∗ expandiert nur Knoten entlang einer optimalen Lösung
 O(`∗) expandierte Knoten, O(`∗b) erzeugte Knoten, wobei

`∗: Länge der gefundenen optimalen Lösung
b: Verzweigungsgrad

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Zeitaufwand von A∗ (2)

Genauere Analyse:

Abhängigkeit der Laufzeit von A∗ vom Heuristik-Fehler

Beispiel:

Einheitskosten-Probleme mit

konstantem Verzweigungsgrad und

konstantem absoluten Fehler: |h∗(s)− h(s)| ≤ c für alle s ∈ S

Zeitaufwand:

Zustandsraum ist Baum: Laufzeit von A∗

skaliert linear in Lösungslänge (Pohl 1969; Gaschnig 1977)

allgemeine Zustandsräume: Laufzeit von A∗

skaliert exponentiell in Lösungslänge (Helmert & Röger 2008)

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Zeitaufwand durch Reopening

Wie aufwändig ist Reopening?

Für die meisten praktischen Probleme und inkonsistenten,
aber zulässigen Heuristiken, ist die Zahl wiedereröffneter
Knoten vernachlässigbar.

Ausnahmen existieren:
Martelli (1977) konstruiert Zustandsräume mit n Zuständen,
bei denen exponentiell (in n) viele Zustände von A∗

wiedereröffnet werden
(exponentiell schlechter als uniforme Kostensuche)

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Speicheraufwand von A∗

Speicheraufwand von A∗:

alle erzeugten Knoten werden potenziell für immer gespeichert
(Ausnahme: Duplikate)

 Speicheraufwand kann so gross wie Zeitaufwand sein
(potenziell niedriger wegen Duplikaten und Reopening)

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Praktische Auswertung

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Praktische Auswertung von A∗ (1)

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

h1: Anzahl Kacheln in falscher Position (misplaced tiles)
h2: Summe der Distanzen der Kacheln zu deren Zielposition
(Manhattan-Distanz)

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Praktische Auswertung von A∗ (2)

jede Zeile mittelt über 100 Instanzen (Anfangszustände)
keine Duplikateliminierung (Baumsuche)

erzeugte Knoten

h∗ iter. Tiefensuche A∗(h1) A∗(h2)

2 10 6 6

4 112 13 12

6 680 20 18

8 6384 39 25

10 47127 93 39

12 3644035 227 73

14 – 539 113

16 – 1301 211

18 – 3056 363

20 – 7276 676

22 – 18094 1219

24 – 39135 1641

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Zusammenfassung

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Zusammenfassung (1)

Weitere Eigenschaften von A∗:

Vollständigkeit:

vollständig für sichere Heuristiken
semi-vollständig, wenn als Baumsuche statt Graphensuche
und Aktionskosten positiv
semi-vollständig für unendliche Zustandsräume mit endlicher
Verzweigung, wenn Infimum der Aktionskosten positiv

Vollständigkeit Zeit- und Speicheraufwand von A∗ Praktische Auswertung Zusammenfassung

Zusammenfassung (2)

Weitere Eigenschaften von A∗:

Zeitkomplexität:

Null-Heuristik: wie uniforme Kostensuche
perfekte Heuristik, positive Aktionskosten:
nur optimale Lösung wird expandiert
allgemein: abhängig von Qualität der Heuristik
und Graphstruktur des Zustandsraums
Reopening normalerweise vernachlässigbar;
in degenerierten Fällen extrem teuer

Speicherkomplexität: ähnlich Zeitkomplexität

	Vollständigkeit
	Zeit- und Speicheraufwand von A*
	Praktische Auswertung
	Zusammenfassung

