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Optimalität von A∗

Vorteil von A∗ gegenüber gieriger Suche:
optimal für Heuristiken mit geeigneten Eigenschaften

sehr wichtiges Ergebnis!

 die nächsten Kapitel: ein genauerer Blick auf A∗

In diesem Kapitel beweisen wir zunächst zwei wichtige Lemmas.
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A∗: Monotonielemma (1)

Lemma (Monotonie von A∗ mit konsistenten Heuristiken)

Betrachte A∗ mit einer konsistenten Heuristik.

Dann gilt:

1 Wenn n′ ein Kindknoten von n ist, gilt f (n′) ≥ f (n).

2 Auf allen von A∗ erzeugten Pfaden
steigen die f -Werte monoton.

3 Die Folge der f -Werte der von A∗ expandierten Knoten
steigt monoton.
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A∗: Monotonielemma (2)

Beweis.

zu 1.:
Sei n′ ein Kindknoten von n über Aktion a.
Sei s = n.state, s ′ = n′.state.

Definition von f : f (n) = g(n) + h(s), f (n′) = g(n′) + h(s ′)

Definition von g : g(n′) = g(n) + cost(a)

Konsistenz von h: h(s) ≤ cost(a) + h(s ′)

 f (n) = g(n) + h(s) ≤ g(n) + cost(a) + h(s ′)
= g(n′) + h(s ′) = f (n′)

zu 2.: folgt direkt aus 1.
. . .
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A∗: Monotonielemma (3)

Beweis (Fortsetzung).

zu 3.:

Sei fb der minimale f -Wert in open
am Anfang einer Schleifeniteration in A∗.
Sei n der entfernte Knoten mit f (n) = fb.

zu zeigen: am Ende der Iteration
ist der minimale f -Wert in open mindestens fb.

Wir müssen die Operationen betrachten,
die open modifizieren: open.pop min und open.insert.

open.pop min kann den minimalen f -Wert in open
nicht verringern (nur erhöhen).

Die mit open.insert hinzugefügten Knoten n′ sind Kinder
von n und erfüllen daher f (n′) ≥ f (n) = fb nach Teil 1.
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von n und erfüllen daher f (n′) ≥ f (n) = fb nach Teil 1.
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Optimale Pfade

Zwei weitere Notationen im Zusammenhang mit optimalen Pfaden
vom Anfangszustand s0 zu Zuständen s:

g∗(s): Kosten eines optimalen Pfades von s0 zu s

f ∗h (s) = g∗(s) + h(s)

Anmerkungen:

f ∗h und g∗ für Zustände, nicht Knoten definiert,
anders als f und g (Warum?)

f ∗h (n.state) ≤ f (n) für alle Knoten n,
die ein Suchalgorithmus erzeugen kann (Warum?)
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A∗: Optimale-Pfade-Lemma (1)

Lemma (Optimale Pfade für A∗ mit konsistenter Heuristik)

Sei n ein Knoten, der von A∗ mit einer konsistenten Heuristik
expandiert wird, und sei s = n.state.

Dann gilt:

1 g(n) = g∗(s)

2 f (n) = f ∗h (s)

In Worten: Wenn A∗ mit konsistenter Heuristik n expandiert,
wurde ein optimaler Pfad von s0 zum Zustand von n gefunden.
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A∗: Optimale-Pfade-Lemma (2)

Beweis.

Induktion über die Anzahl expandierter Knoten:

Induktionsanfang:
Der erste expandierte Knoten ist der Wurzelknoten n0
für den Anfangszustand s0.
Es gilt: g(n0) = 0 = g∗(s0) und f (n0) = 0 + h(s0) = f ∗h (s0)

Induktionsschritt:

zu 2.:
Betrachte Situation, unmittelbar bevor n von open entfernt wird.
Sei s = n.state.
Wir können annehmen, dass n kein Duplikat ist (s /∈ closed),
denn sonst wird n nicht expandiert.

Sei s0, s1, . . . , sk mit sk = s ein optimaler Pfad von s0 zu s.

Sei j der grösste Index mit sj ∈ closed und sj+1 /∈ closed. . . .
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Einführung Monotonielemma Optimale-Pfade-Lemma Zusammenfassung

A∗: Optimale-Pfade-Lemma (2)

Beweis.

Induktion über die Anzahl expandierter Knoten:

Induktionsanfang:
Der erste expandierte Knoten ist der Wurzelknoten n0
für den Anfangszustand s0.
Es gilt: g(n0) = 0 = g∗(s0) und f (n0) = 0 + h(s0) = f ∗h (s0)

Induktionsschritt:

zu 2.:
Betrachte Situation, unmittelbar bevor n von open entfernt wird.
Sei s = n.state.
Wir können annehmen, dass n kein Duplikat ist (s /∈ closed),
denn sonst wird n nicht expandiert.

Sei s0, s1, . . . , sk mit sk = s ein optimaler Pfad von s0 zu s.

Sei j der grösste Index mit sj ∈ closed und sj+1 /∈ closed. . . .
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A∗: Optimale-Pfade-Lemma (3)

Beweis (Fortsetzung).

So ein Index j existiert immer, da

s0 ∈ closed (Wurzelknoten schon expandiert)
sk /∈ closed (sonst n Duplikat)

Da sj ∈ closed wurde ein Knoten nj
mit nj .state = sj expandiert.

Nach Induktionsvoraussetzung gilt g(nj) = g∗(sj).

Daher können wir o.B.d.A. annehmen,
dass die Zustände s0, . . . , sj so gewählt wurden,
dass sie den Pfad zu nj bilden.
Dies beeinflusst nicht die Optimalität des Pfades s0, . . . , sk .

Seien n0, . . . , nk die Knoten, die zu 〈s0, . . . , sk〉 gehören.
(Es ist nicht nötig, dass diese von A∗ erzeugt wurden.) . . .
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A∗: Optimale-Pfade-Lemma (4)

Beweis (Fortsetzung).

Aus sj ∈ closed und sj+1 /∈ closed erhalten wir nj+1 ∈ open:

Bei der Expansion von nj wurde nj+1 in open eingefügt.
Wenn nj+1 aus open entnommen worden wäre,
hätten wir sj+1 ∈ closed. (Widerspruch!)

Also sind unmittelbar vor der Expansion von n
sowohl nj+1 als auch n in open, und n wird ausgewählt.
Daraus folgt f (n) ≤ f (nj+1).

Wegen der Monotonie von f auf Pfaden:
f (nj+1) ≤ f (nj+2) ≤ · · · ≤ f (nk)

Wegen der Optimalität des Pfades s0, . . . , sk :
f (nk) = g(nk) + h(sk) = g∗(sk) + h(sk) = f ∗h (sk) = f ∗h (s)

Zusammen: f (n) ≤ f ∗h (s) und daher f (n) = f ∗h (s)
(sonst Widerspruch zur Definition von f ∗h ) . . .
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(sonst Widerspruch zur Definition von f ∗h ) . . .
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A∗: Optimale-Pfade-Lemma (4)

Beweis (Fortsetzung).

Aus sj ∈ closed und sj+1 /∈ closed erhalten wir nj+1 ∈ open:

Bei der Expansion von nj wurde nj+1 in open eingefügt.
Wenn nj+1 aus open entnommen worden wäre,
hätten wir sj+1 ∈ closed. (Widerspruch!)

Also sind unmittelbar vor der Expansion von n
sowohl nj+1 als auch n in open, und n wird ausgewählt.
Daraus folgt f (n) ≤ f (nj+1).

Wegen der Monotonie von f auf Pfaden:
f (nj+1) ≤ f (nj+2) ≤ · · · ≤ f (nk)

Wegen der Optimalität des Pfades s0, . . . , sk :
f (nk) = g(nk) + h(sk) = g∗(sk) + h(sk) = f ∗h (sk) = f ∗h (s)

Zusammen: f (n) ≤ f ∗h (s) und daher f (n) = f ∗h (s)
(sonst Widerspruch zur Definition von f ∗h ) . . .
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A∗: Optimale-Pfade-Lemma (5)

Beweis (Fortsetzung).

zu 1.:

aus 2.: f (n) = f ∗h (s)

Definition: g(n) + h(s) = g∗(s) + h(s)

Subtraktion von h(s): g(n) = g∗(s)

Im letzten Schritt verwenden wird, dass h(s) endlich sein muss,
falls n expandiert wird.
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Zwischenbemerkung: Optimalität von A∗?

Das Ziel unserer Analyse ist, die Optimalität von A∗

unter geeigneten Voraussetzungen nachzuweisen.

Reichen unsere bisherigen Ergebnisse hierfür aus?

Fast! Das Optimale-Pfade-Lemma garantiert:
Wenn A∗ einen Zielknoten aus open entnimmt, wurde
ein optimaler Pfad zum zugehörigen Zielzustand gefunden.

Aber vielleicht gibt es billigere Pfade
zu anderen Zielzuständen?

Ohne weitere Forderungen an die Heuristik ist dies
tatsächlich möglich! (Konsistenz alleine reicht nicht.)
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Zwischenbemerkung: Optimalität von A∗?

Das Ziel unserer Analyse ist, die Optimalität von A∗

unter geeigneten Voraussetzungen nachzuweisen.

Reichen unsere bisherigen Ergebnisse hierfür aus?

Fast! Das Optimale-Pfade-Lemma garantiert:
Wenn A∗ einen Zielknoten aus open entnimmt, wurde
ein optimaler Pfad zum zugehörigen Zielzustand gefunden.

Aber vielleicht gibt es billigere Pfade
zu anderen Zielzuständen?

Ohne weitere Forderungen an die Heuristik ist dies
tatsächlich möglich! (Konsistenz alleine reicht nicht.)



Einführung Monotonielemma Optimale-Pfade-Lemma Zusammenfassung

Zusammenfassung
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Zusammenfassung

Beginn Optimalitätsbeweis von A∗:

Monotonie-Lemma für A∗ mit konsistenter Heuristik:

f -Werte steigen monoton von Knoten zu Kindknoten
f -Werte steigen monoton auf Pfaden
f -Werte der expandierten Knoten steigen monoton

Optimale-Pfade-Lemma für A∗ mit konsistenter Heuristik:
Wenn n expandiert wird, wurde ein optimaler Pfad
von der Wurzel zum Zustand von n gefunden.
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