
Grundlagen der Künstlichen Intelligenz
12. Klassische Suche: Bestensuche als Graphensuche

Malte Helmert

Universität Basel

28. März 2014



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Klassische Suche: Überblick

Kapitelüberblick klassische Suche:

3.–5. Einführung

6.–9. Basisalgorithmen

10.-17. heuristische Algorithmen

10. Heuristiken
11. Analyse von Heuristiken
12. Bestensuche als Graphensuche
13. Gierige Bestensuche, A∗, Weighted A∗

14. IDA∗

15. A∗: Optimalität, Teil I
16. A∗: Optimalität, Teil II
17. A∗: Vollständigkeit und Komplexität



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Einführung



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Heuristische Suchalgorithmen

heuristische Suchalgorithmen

Heuristische Suchalgorithmen verwenden Heuristikfunktionen,
um die Reihenfolge der Knotenexpansion
teilweise oder vollständig zu bestimmen.

dieses Kapitel: kurze Einführung

Folgekapitel: gründlichere Analyse



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Bestensuche



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Bestensuche

Bestensuche ist eine Klasse von Suchalgorithmen, die in jedem
Schritt den

”
am besten aussehenden“ Knoten expandieren.

Entscheidung, welcher Knoten am besten ist,
verwendet Heuristik. . .

. . . aber nicht notwendigerweise ausschliesslich.

Bestensuche

Eine Bestensuche ist ein heuristischer Suchalgorithmus,
der Suchknoten anhand einer Bewertungsfunktion f evaluiert
und immer einen Knoten n mit minimalem f (n) expandiert.

Implementierung im Wesentlichen wie uniforme Kostensuche

unterschiedliche Wahl von f
 unterschiedliche Suchalgorithmen



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Bestensuche

Bestensuche ist eine Klasse von Suchalgorithmen, die in jedem
Schritt den

”
am besten aussehenden“ Knoten expandieren.

Entscheidung, welcher Knoten am besten ist,
verwendet Heuristik. . .

. . . aber nicht notwendigerweise ausschliesslich.

Bestensuche

Eine Bestensuche ist ein heuristischer Suchalgorithmus,
der Suchknoten anhand einer Bewertungsfunktion f evaluiert
und immer einen Knoten n mit minimalem f (n) expandiert.

Implementierung im Wesentlichen wie uniforme Kostensuche

unterschiedliche Wahl von f
 unterschiedliche Suchalgorithmen



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Die wichtigsten Bestensuchalgorithmen

Die wichtigsten Bestensuchalgorithmen:

f (n) = h(n.state): gierige Bestensuche
(greedy best-first search)
 nur die Heuristik zählt

f (n) = g(n) + h(n.state): A∗

 Kombination von Pfadkosten und Heuristik

f (n) = g(n) + w · h(n.state): Weighted A∗

w ∈ R+
0 ist ein Parameter

 interpoliert zwischen gieriger Bestensuche und A∗

 Eigenschaften: nächste Kapitel

Was erhalten wir mit f (n) := g(n)?



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Die wichtigsten Bestensuchalgorithmen

Die wichtigsten Bestensuchalgorithmen:

f (n) = h(n.state): gierige Bestensuche
(greedy best-first search)
 nur die Heuristik zählt

f (n) = g(n) + h(n.state): A∗

 Kombination von Pfadkosten und Heuristik

f (n) = g(n) + w · h(n.state): Weighted A∗

w ∈ R+
0 ist ein Parameter

 interpoliert zwischen gieriger Bestensuche und A∗

 Eigenschaften: nächste Kapitel

Was erhalten wir mit f (n) := g(n)?



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Die wichtigsten Bestensuchalgorithmen

Die wichtigsten Bestensuchalgorithmen:

f (n) = h(n.state): gierige Bestensuche
(greedy best-first search)
 nur die Heuristik zählt

f (n) = g(n) + h(n.state): A∗

 Kombination von Pfadkosten und Heuristik

f (n) = g(n) + w · h(n.state): Weighted A∗

w ∈ R+
0 ist ein Parameter

 interpoliert zwischen gieriger Bestensuche und A∗

 Eigenschaften: nächste Kapitel

Was erhalten wir mit f (n) := g(n)?



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Die wichtigsten Bestensuchalgorithmen

Die wichtigsten Bestensuchalgorithmen:

f (n) = h(n.state): gierige Bestensuche
(greedy best-first search)
 nur die Heuristik zählt

f (n) = g(n) + h(n.state): A∗

 Kombination von Pfadkosten und Heuristik

f (n) = g(n) + w · h(n.state): Weighted A∗

w ∈ R+
0 ist ein Parameter

 interpoliert zwischen gieriger Bestensuche und A∗

 Eigenschaften: nächste Kapitel

Was erhalten wir mit f (n) := g(n)?



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Die wichtigsten Bestensuchalgorithmen

Die wichtigsten Bestensuchalgorithmen:

f (n) = h(n.state): gierige Bestensuche
(greedy best-first search)
 nur die Heuristik zählt

f (n) = g(n) + h(n.state): A∗

 Kombination von Pfadkosten und Heuristik

f (n) = g(n) + w · h(n.state): Weighted A∗

w ∈ R+
0 ist ein Parameter

 interpoliert zwischen gieriger Bestensuche und A∗

 Eigenschaften: nächste Kapitel

Was erhalten wir mit f (n) := g(n)?



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Die wichtigsten Bestensuchalgorithmen

Die wichtigsten Bestensuchalgorithmen:

f (n) = h(n.state): gierige Bestensuche
(greedy best-first search)
 nur die Heuristik zählt

f (n) = g(n) + h(n.state): A∗

 Kombination von Pfadkosten und Heuristik

f (n) = g(n) + w · h(n.state): Weighted A∗

w ∈ R+
0 ist ein Parameter

 interpoliert zwischen gieriger Bestensuche und A∗

 Eigenschaften: nächste Kapitel

Was erhalten wir mit f (n) := g(n)?



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Bestensuche: Graphen- oder Baumsuche?

Bestensuche kann eine Graphensuche oder eine Baumsuche sein.

hier: Graphensuche (d. h., mit Duplikateliminierung),
was der häufigere Fall ist

Kapitel 14: eine Baumsuch-Variante



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Algorithmen-Details



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Erinnerung: uniforme Kostensuche

Erinnerung: uniforme Kostensuche

Uniforme Kostensuche

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n = open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Bestensuche ohne Reopening (1. Versuch)

Bestensuche ohne Reopening (1. Versuch)

Bestensuche ohne Reopening (1. Versuch)

open := new MinHeap ordered by f
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n = open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Bestensuche ohne Reopening (1. Versuch): Diskussion

Diskussion:

Das ist schon fast alles.

Zwei nützliche Verbesserungen:

verwirf Zustände, die die Heuristik als unlösbar betrachtet
 benötigen dann keinen Platz in open

wenn mehrere Suchknoten denselben f -Wert aufweisen,
verwende h zum Tie-Breaking (bevorzuge niedriges h)

nicht immer eine gute Idee, aber oft
offensichtlich unnötig, wenn f = h (gierige Bestensuche)



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Bestensuche ohne Reopening (1. Versuch): Diskussion

Diskussion:

Das ist schon fast alles.

Zwei nützliche Verbesserungen:

verwirf Zustände, die die Heuristik als unlösbar betrachtet
 benötigen dann keinen Platz in open

wenn mehrere Suchknoten denselben f -Wert aufweisen,
verwende h zum Tie-Breaking (bevorzuge niedriges h)

nicht immer eine gute Idee, aber oft
offensichtlich unnötig, wenn f = h (gierige Bestensuche)



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Bestensuche ohne Reopening (endgültige Version)

Bestensuche ohne Reopening

open := new MinHeap ordered by 〈f , h〉
if h(init()) <∞:

open.insert(make root node())
closed := new HashSet
while not open.is empty():

n = open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Bestensuche: Eigenschaften

Eigenschaften:

vollständig, wenn h sicher ist (Warum?)

Optimalität hängt von f ab
 folgende Kapitel



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Reopening



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Reopening

Erinnerung: uniforme Kostensuche besucht Knoten
in Reihenfolge ansteigender g -Werte

 garantiert, dass billigster Pfad zum Zustand eines Knoten
gefunden wurde, wenn der Knoten expandiert wird

mit beliebigen f -Funktionen in der Bestensuche
gilt dies im Allgemeinen nicht

 um billigere Lösungen zu finden, kann es sinnvoll sein,
Duplikatknoten zu expandieren, wenn billigere Pfade
zu deren Zuständen gefunden werden (Reopening)



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Bestensuche mit Reopening

Bestensuche mit Reopening

open := new MinHeap ordered by 〈f , h〉
if h(init()) <∞:

open.insert(make root node())
distances := new HashTable
while not open.is empty():

n = open.pop min()
if distances.lookup(n.state) = none or g(n) < distances[n.state]:

distances[n.state] := g(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

 distances steuert Reopening und ersetzt closed



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Zusammenfassung



Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Zusammenfassung

Bestensuche expandiert immer Knoten mit minimalem Wert
der Bewertungsfunktion f

f = h: gierige Bestensuche
f = g + h: A∗

f = g + w · h für Parameter w ∈ R+
0 : Weighted A∗

hier: Bestensuche als Graphensuche

Reopening: expandiere Duplikate mit niedrigeren Pfadkosten,
um billigere Lösungen zu finden


	Einführung
	Bestensuche
	Algorithmen-Details
	Reopening
	Zusammenfassung

