Grundlagen der Kiinstlichen Intelligenz

12. Klassische Suche: Bestensuche als Graphensuche

Malte Helmert

Universitat Basel

28. Marz 2014



Klassische Suche: Uberblick

Kapiteliiberblick klassische Suche:
@ 3.-5. Einflihrung

e 6.—9. Basisalgorithmen

@ 10.-17. heuristische Algorithmen

10.
11.
12.
13.
14.
15.
16.
17.

Heuristiken

Analyse von Heuristiken

Bestensuche als Graphensuche

Gierige Bestensuche, A*, Weighted A"
IDA™

A*: Optimalitit, Teil |

A*: Optimalitat, Teil Il

A*: Vollstandigkeit und Komplexitit



Einfiihrung



Einfiihrung
oce

Heuristische Suchalgorithmen

heuristische Suchalgorithmen

Heuristische Suchalgorithmen verwenden Heuristikfunktionen,
um die Reihenfolge der Knotenexpansion
teilweise oder vollstédndig zu bestimmen.

o dieses Kapitel: kurze Einfiihrung

o Folgekapitel: griindlichere Analyse



Bestensuche



Bestensuche
0®00

Bestensuche

Bestensuche ist eine Klasse von Suchalgorithmen, die in jedem
Schritt den ,,am besten aussehenden® Knoten expandieren.

o Entscheidung, welcher Knoten am besten ist,
verwendet Heuristik. . .

@ ...aber nicht notwendigerweise ausschliesslich.



Bestensuche
0®00

Bestensuche

Bestensuche ist eine Klasse von Suchalgorithmen, die in jedem
Schritt den ,,am besten aussehenden® Knoten expandieren.

o Entscheidung, welcher Knoten am besten ist,
verwendet Heuristik. . .

@ ...aber nicht notwendigerweise ausschliesslich.

Bestensuche

Eine Bestensuche ist ein heuristischer Suchalgorithmus,
der Suchknoten anhand einer Bewertungsfunktion f evaluiert
und immer einen Knoten n mit minimalem f(n) expandiert.

@ Implementierung im Wesentlichen wie uniforme Kostensuche

@ unterschiedliche Wahl von f
~» unterschiedliche Suchalgorithmen



Bestensuche
fe]eY 1]

Die wichtigsten Bestensuchalgorithmen

Die wichtigsten Bestensuchalgorithmen:



Bestensuche
fe]eY 1]

Die wichtigsten Bestensuchalgorithmen

Die wichtigsten Bestensuchalgorithmen:

e f(n) = h(n.state): gierige Bestensuche
(greedy best-first search)
~» nur die Heuristik zahlt



Bestensuche
fe]eY 1]

Die wichtigsten Bestensuchalgorithmen

Die wichtigsten Bestensuchalgorithmen:
e f(n) = h(n.state): gierige Bestensuche
(greedy best-first search)
~ nur die Heuristik zahlt
e f(n) = g(n) + h(n.state): A*
~» Kombination von Pfadkosten und Heuristik



Bestensuche
fe]eY 1]

Die wichtigsten Bestensuchalgorithmen

Die wichtigsten Bestensuchalgorithmen:

e f(n) = h(n.state): gierige Bestensuche
(greedy best-first search)
~ nur die Heuristik zahlt

e f(n) = g(n) + h(n.state): A*
~» Kombination von Pfadkosten und Heuristik

e f(n) = g(n)+ w - h(n.state): Weighted A*
w € ]Rar ist ein Parameter
~ interpoliert zwischen gieriger Bestensuche und A*



Bestensuche
fe]eY 1]

Die wichtigsten Bestensuchalgorithmen

Die wichtigsten Bestensuchalgorithmen:

e f(n) = h(n.state): gierige Bestensuche
(greedy best-first search)
~ nur die Heuristik zahlt

e f(n) = g(n) + h(n.state): A*
~» Kombination von Pfadkosten und Heuristik

e f(n) = g(n)+ w - h(n.state): Weighted A*
w € ]Rar ist ein Parameter
~ interpoliert zwischen gieriger Bestensuche und A*

~> Eigenschaften: nichste Kapitel



Bestensuche
fe]eY 1]

Die wichtigsten Bestensuchalgorithmen

Die wichtigsten Bestensuchalgorithmen:

e f(n) = h(n.state): gierige Bestensuche
(greedy best-first search)
~ nur die Heuristik zahlt

e f(n) = g(n) + h(n.state): A*
~» Kombination von Pfadkosten und Heuristik

e f(n) = g(n)+ w - h(n.state): Weighted A*
w € ]Rar ist ein Parameter
~ interpoliert zwischen gieriger Bestensuche und A*

~> Eigenschaften: nichste Kapitel

Was erhalten wir mit f(n) := g(n)?



Bestensuche
oooe

Bestensuche: Graphen- oder Baumsuche?

Bestensuche kann eine Graphensuche oder eine Baumsuche sein.

@ hier: Graphensuche (d.h., mit Duplikateliminierung),
was der haufigere Fall ist

o Kapitel 14: eine Baumsuch-Variante



Algorithmen-Details



Einfiihrung che Algorithmen-Details ng . mmenfassung

[e] Jele]ele]

Erinnerung: uniforme Kostensuche

Erinnerung: uniforme Kostensuche

Uniforme Kostensuche

open := new MinHeap ordered by g
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n = open.pop_min()
if n.state ¢ closed.
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
open.insert(n’)
return unsolvable )




Einfiihrung 3estensuche Algorithmen-Details

[e]e] lo]ele]

Bestensuche ohne Reopening (1. Versuch)

Bestensuche ohne Reopening (1. Versuch)

Bestensuche ohne Reopening (1. Versuch)

open := new MinHeap ordered by f
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n = open.pop_min()
if n.state ¢ closed.
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
open.insert(n’)
return unsolvable




Algorithmen-Details
[oYeYe] Yolo)

Bestensuche ohne Reopening (1. Versuch): Diskussion

Diskussion:

Das ist schon fast alles.



Algorithmen-Details
[oYeYe] Yolo)

Bestensuche ohne Reopening (1. Versuch): Diskussion

Diskussion:

Das ist schon fast alles.

Zwei niitzliche Verbesserungen:

o verwirf Zustinde, die die Heuristik als unlésbar betrachtet
~ bendtigen dann keinen Platz in open

@ wenn mehrere Suchknoten denselben f-Wert aufweisen,
verwende h zum Tie-Breaking (bevorzuge niedriges h)

e nicht immer eine gute Idee, aber oft
o offensichtlich unnétig, wenn f = h (gierige Bestensuche)



Einfiihrung 3estensuche Algorithmen-Details
0000@0

Bestensuche ohne Reopening (endgiiltige Version)

Bestensuche ohne Reopening

open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n = open.pop_min()
if n.state ¢ closed.
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a, s’) € succ(n.state):
if h(s') < oo
n’ := make_node(n, a, s")
open.insert(n’)
return unsolvable




Algorithmen-Details
00000e®

Bestensuche: Eigenschaften

Eigenschaften:
e vollstandig, wenn h sicher ist (Warum?)

e Optimalitdt hdngt von f ab
~ folgende Kapitel



Reopening



Reopening
e 1)

Reopening

@ Erinnerung: uniforme Kostensuche besucht Knoten
in Reihenfolge ansteigender g-Werte
~ garantiert, dass billigster Pfad zum Zustand eines Knoten
gefunden wurde, wenn der Knoten expandiert wird
@ mit beliebigen f-Funktionen in der Bestensuche
gilt dies im Allgemeinen nicht
~~ um billigere Lésungen zu finden, kann es sinnvoll sein,
Duplikatknoten zu expandieren, wenn billigere Pfade
zu deren Zusténden gefunden werden (Reopening)



Einfiihrung 3 suc A i e Reopening Zusammenfassung
0 ocoe

Bestensuche mit Reopening

Bestensuche mit Reopening

open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
distances := new HashTable
while not open.is_empty():
n = open.pop_min()
if distances.lookup(n.state) = none or g(n) < distances|n.state]:
distances|n.state] := g(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
if h(s') < oo:
n’ := make_node(n, a, s")
open.insert(n")
return unsolvable )

~ distances steuert Reopening und ersetzt closed



Zusammenfassung



Zusammenfassung
oe

Zusammenfassung

@ Bestensuche expandiert immer Knoten mit minimalem Wert
der Bewertungsfunktion f

e f = h: gierige Bestensuche
o f=g+h A"
o f =g+ w- hfiir Parameter w € R}: Weighted A*

@ hier: Bestensuche als Graphensuche

@ Reopening: expandiere Duplikate mit niedrigeren Pfadkosten,
um billigere Lésungen zu finden



	Einführung
	Bestensuche
	Algorithmen-Details
	Reopening
	Zusammenfassung

