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Einführung Bestensuche Algorithmen-Details Reopening Zusammenfassung

Klassische Suche: Überblick

Kapitelüberblick klassische Suche:

3.–5. Einführung

6.–9. Basisalgorithmen

10.-17. heuristische Algorithmen

10. Heuristiken
11. Analyse von Heuristiken
12. Bestensuche als Graphensuche
13. Gierige Bestensuche, A∗, Weighted A∗

14. IDA∗

15. A∗: Optimalität, Teil I
16. A∗: Optimalität, Teil II
17. A∗: Vollständigkeit und Komplexität
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Heuristische Suchalgorithmen

heuristische Suchalgorithmen

Heuristische Suchalgorithmen verwenden Heuristikfunktionen,
um die Reihenfolge der Knotenexpansion
teilweise oder vollständig zu bestimmen.

dieses Kapitel: kurze Einführung

Folgekapitel: gründlichere Analyse
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Bestensuche

Bestensuche ist eine Klasse von Suchalgorithmen, die in jedem
Schritt den

”
am besten aussehenden“ Knoten expandieren.

Entscheidung, welcher Knoten am besten ist,
verwendet Heuristik. . .

. . . aber nicht notwendigerweise ausschliesslich.

Bestensuche

Eine Bestensuche ist ein heuristischer Suchalgorithmus,
der Suchknoten anhand einer Bewertungsfunktion f evaluiert
und immer einen Knoten n mit minimalem f (n) expandiert.

Implementierung im Wesentlichen wie uniforme Kostensuche

unterschiedliche Wahl von f
 unterschiedliche Suchalgorithmen
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Die wichtigsten Bestensuchalgorithmen

Die wichtigsten Bestensuchalgorithmen:

f (n) = h(n.state): gierige Bestensuche
(greedy best-first search)
 nur die Heuristik zählt

f (n) = g(n) + h(n.state): A∗

 Kombination von Pfadkosten und Heuristik

f (n) = g(n) + w · h(n.state): Weighted A∗

w ∈ R+
0 ist ein Parameter

 interpoliert zwischen gieriger Bestensuche und A∗

 Eigenschaften: nächste Kapitel

Was erhalten wir mit f (n) := g(n)?
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Bestensuche: Graphen- oder Baumsuche?

Bestensuche kann eine Graphensuche oder eine Baumsuche sein.

hier: Graphensuche (d. h., mit Duplikateliminierung),
was der häufigere Fall ist

Kapitel 14: eine Baumsuch-Variante
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Algorithmen-Details
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Erinnerung: uniforme Kostensuche

Erinnerung: uniforme Kostensuche

Uniforme Kostensuche

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n = open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Bestensuche ohne Reopening (1. Versuch)
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Bestensuche ohne Reopening (1. Versuch): Diskussion

Diskussion:

Das ist schon fast alles.

Zwei nützliche Verbesserungen:

verwirf Zustände, die die Heuristik als unlösbar betrachtet
 benötigen dann keinen Platz in open

wenn mehrere Suchknoten denselben f -Wert aufweisen,
verwende h zum Tie-Breaking (bevorzuge niedriges h)

nicht immer eine gute Idee, aber oft
offensichtlich unnötig, wenn f = h (gierige Bestensuche)
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Bestensuche ohne Reopening (endgültige Version)

Bestensuche ohne Reopening

open := new MinHeap ordered by 〈f , h〉
if h(init()) <∞:

open.insert(make root node())
closed := new HashSet
while not open.is empty():

n = open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Bestensuche: Eigenschaften

Eigenschaften:

vollständig, wenn h sicher ist (Warum?)

Optimalität hängt von f ab
 folgende Kapitel
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Reopening

Erinnerung: uniforme Kostensuche besucht Knoten
in Reihenfolge ansteigender g -Werte

 garantiert, dass billigster Pfad zum Zustand eines Knoten
gefunden wurde, wenn der Knoten expandiert wird

mit beliebigen f -Funktionen in der Bestensuche
gilt dies im Allgemeinen nicht

 um billigere Lösungen zu finden, kann es sinnvoll sein,
Duplikatknoten zu expandieren, wenn billigere Pfade
zu deren Zuständen gefunden werden (Reopening)
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Bestensuche mit Reopening

Bestensuche mit Reopening

open := new MinHeap ordered by 〈f , h〉
if h(init()) <∞:

open.insert(make root node())
distances := new HashTable
while not open.is empty():

n = open.pop min()
if distances.lookup(n.state) = none or g(n) < distances[n.state]:

distances[n.state] := g(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

 distances steuert Reopening und ersetzt closed
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Zusammenfassung

Bestensuche expandiert immer Knoten mit minimalem Wert
der Bewertungsfunktion f

f = h: gierige Bestensuche
f = g + h: A∗

f = g + w · h für Parameter w ∈ R+
0 : Weighted A∗

hier: Bestensuche als Graphensuche

Reopening: expandiere Duplikate mit niedrigeren Pfadkosten,
um billigere Lösungen zu finden
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