
Grundlagen der Künstlichen Intelligenz
9. Klassische Suche: Tiefensuche und iterative Tiefensuche

Malte Helmert

Universität Basel

21. März 2014

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Klassische Suche: Überblick

Kapitelüberblick klassische Suche:

3.–5. Einführung

6.–9. Basisalgorithmen

6. Datenstrukturen für Suchalgorithmen
7. Baumsuche und Graphensuche
8. Breitensuche und uniforme Kostensuche
9. Tiefensuche und iterative Tiefensuche

folgende Kapitel: heuristische Algorithmen

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefensuche

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Blinde Suchalgorithmen: Beispiele

Beispiele für blinde Suchalgorithmen:

Breitensuche

uniforme Kostensuche

Tiefensuche

(dieses Kapitel)

tiefenbeschränkte Suche

(dieses Kapitel)

iterative Tiefensuche

(dieses Kapitel)

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Blinde Suchalgorithmen: Beispiele

Beispiele für blinde Suchalgorithmen:

Breitensuche

uniforme Kostensuche

Tiefensuche (dieses Kapitel)

tiefenbeschränkte Suche (dieses Kapitel)

iterative Tiefensuche (dieses Kapitel)

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefensuche

Tiefensuche expandiert Knoten in umgekehrter
Erzeugungsreihenfolge (LIFO).
 tiefster Knoten zuerst expandiert
 z. B. Open-Liste als Stack implementiert

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefensuche: Beispiel

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefensuche: Beispiel

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefensuche: Beispiel

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefensuche: Beispiel

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefensuche: einige Eigenschaften

fast immer als Baumsuche implementiert
(wir werden sehen, warum)

nicht vollständig, nicht semi-vollständig, nicht optimal
(Warum?)

vollständig für azyklische Zustandsräume,
z. B. wenn Zustandsraum gerichteter Baum

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Erinnerung: generischer Baumsuchalgorithmus

Erinnerung aus Kapitel 7:

Generische Baumsuche

open := new OpenList
open.insert(make root node())
while not open.is empty():

n = open.pop()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefensuche (nicht-rekursive Version)

Tiefensuche (nicht-rekursive Version):

Tiefensuche (nicht-rekursive Version)

open := new Stack
open.push back(make root node())
while not open.is empty():

n = open.pop back()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Nicht-rekursive Tiefensuche: Diskussion

Diskussion:

es ist nicht viel falsch mit dem Code
(sofern man aufpasst, nicht mehr benötigte Knoten freizugeben,

wenn die Programmiersprache keine Garbage-Collection beinhaltet)

Tiefensuche als rekursiver Algorithmus
ist aber einfacher und effizienter

 Maschinen-Stack als implizite Open-Liste

 keine Suchknoten-Datenstruktur nötig

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefensuche (rekursive Version)

function depth first search(s)

if is goal(s):
return 〈〉

for each 〈a, s ′〉 ∈ succ(s):
solution := depth first search(s ′)
if solution 6= none:

solution.push front(a)
return solution

return none

Hauptfunktion:

Tiefensuche (rekursive Version)

return depth first search(init())

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefensuche: Aufwand

Zeitaufwand:

Wenn der Zustandsraum Pfade der Länge m enthält,
kann die Tiefensuche O(bm) Knoten erzeugen,
selbst wenn sehr kurze Lösungen (z. B. Länge 1) existieren

Andererseits: im besten Fall können Lösungen der Länge `
mit O(b`) erzeugten Knoten gefunden werden. (Warum?)

verbesserbar auf O(`), wenn inkrementelle
Nachfolgerberechnung möglich

Speicheraufwand:

muss nur Knoten entlang aktuell exploriertem Pfad speichern
(“entlang” = Knoten auf dem Pfad und deren Kinder)

 Speicheraufwand O(bm) wenn m maximale erreichte Suchtiefe

dieser niedrige Speicherbedarf ist der Hauptgrund,
warum Tiefensuche trotz ihrer Nachteile interessant ist

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefensuche: Aufwand

Zeitaufwand:

Wenn der Zustandsraum Pfade der Länge m enthält,
kann die Tiefensuche O(bm) Knoten erzeugen,
selbst wenn sehr kurze Lösungen (z. B. Länge 1) existieren

Andererseits: im besten Fall können Lösungen der Länge `
mit O(b`) erzeugten Knoten gefunden werden. (Warum?)

verbesserbar auf O(`), wenn inkrementelle
Nachfolgerberechnung möglich

Speicheraufwand:

muss nur Knoten entlang aktuell exploriertem Pfad speichern
(“entlang” = Knoten auf dem Pfad und deren Kinder)

 Speicheraufwand O(bm) wenn m maximale erreichte Suchtiefe

dieser niedrige Speicherbedarf ist der Hauptgrund,
warum Tiefensuche trotz ihrer Nachteile interessant ist

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefensuche: Aufwand

Zeitaufwand:

Wenn der Zustandsraum Pfade der Länge m enthält,
kann die Tiefensuche O(bm) Knoten erzeugen,
selbst wenn sehr kurze Lösungen (z. B. Länge 1) existieren

Andererseits: im besten Fall können Lösungen der Länge `
mit O(b`) erzeugten Knoten gefunden werden. (Warum?)

verbesserbar auf O(`), wenn inkrementelle
Nachfolgerberechnung möglich

Speicheraufwand:

muss nur Knoten entlang aktuell exploriertem Pfad speichern
(“entlang” = Knoten auf dem Pfad und deren Kinder)

 Speicheraufwand O(bm) wenn m maximale erreichte Suchtiefe

dieser niedrige Speicherbedarf ist der Hauptgrund,
warum Tiefensuche trotz ihrer Nachteile interessant ist

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefensuche: Aufwand

Zeitaufwand:

Wenn der Zustandsraum Pfade der Länge m enthält,
kann die Tiefensuche O(bm) Knoten erzeugen,
selbst wenn sehr kurze Lösungen (z. B. Länge 1) existieren

Andererseits: im besten Fall können Lösungen der Länge `
mit O(b`) erzeugten Knoten gefunden werden. (Warum?)

verbesserbar auf O(`), wenn inkrementelle
Nachfolgerberechnung möglich

Speicheraufwand:

muss nur Knoten entlang aktuell exploriertem Pfad speichern
(“entlang” = Knoten auf dem Pfad und deren Kinder)

 Speicheraufwand O(bm) wenn m maximale erreichte Suchtiefe

dieser niedrige Speicherbedarf ist der Hauptgrund,
warum Tiefensuche trotz ihrer Nachteile interessant ist

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Iterative Tiefensuche

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefenbeschränkte Suche

Tiefenbeschränkte Suche:

Tiefensuche, die alle Suchknoten in einer gegebenen Tiefe n
abschneidet (nicht weiter expandiert)

 für sich allein nicht sehr nützlich,
aber wichtige Zutat in nützlicheren Suchalgorithmen

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Tiefenbeschränkte Suche: Pseudo-Code

function depth limited search(s, depth limit):

if is goal(s):
return 〈〉

if depth limit > 0:
for each 〈a, s ′〉 ∈ succ(s):

solution := depth limited search(s ′, depth limit− 1)
if solution 6= none:

solution.push front(a)
return solution

return none

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Iterative Tiefensuche

Iterative Tiefensuche:

Idee: führe eine Folge tiefenbeschränkter Suchen
mit ansteigenden Tiefenschranken aus

klingt verschwenderisch (jede Iteration wiederholt
die gesamte vorher geleistete Arbeit), aber tatsächlich
ist der Aufwand vertretbar (Analyse folgt)

Iterative Tiefensuche

for depth limit ∈ {0, 1, 2, . . . }:
solution := depth limited search(init()), depth limit)
if solution 6= none:

return solution

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Iterative Tiefensuche: Eigenschaften

Kombiniert Vorteile von Breiten- und Tiefensuche:

(fast) wie BFS: semi-vollständig (allerdings nicht vollständig)

wie BFS: optimal wenn alle Aktionen dieselben Kosten haben

wie DFS: muss nur Knoten entlang eines Pfades speichern
 Speicheraufwand O(bd), wobei d minimale Lösungslänge

Zeitaufwand kaum höher als BFS (siehe Analyse später)

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Iterative Tiefensuche: Beispiel

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Iterative Tiefensuche: Beispiel

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Iterative Tiefensuche: Beispiel

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Iterative Tiefensuche: Beispiel

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Iterative Tiefensuche: Beispiel für den Aufwand

Zeitaufwand (erzeugte Knoten):

Breitensuche 1 + b + b2 + · · ·+ bd−1 + bd

Iterative Tiefensuche (d + 1) + db + (d − 1)b2 + · · ·+ 2bd−1 + 1bd

Beispiel: b = 10, d = 5

Breitensuche 1 + 10 + 100 + 1000 + 10000 + 100000

= 111111

Iterative Tiefensuche 6 + 50 + 400 + 3000 + 20000 + 100000

= 123456

für b = 11, nur 11% mehr Knoten als mit Breitensuche

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Iterative Tiefensuche: Zeitaufwand

Satz (Zeitaufwand der iterativen Tiefensuche)

Sei b der maximale Verzweigungsgrad und d die minimale
Lösungslänge des betrachteten Zustandsraums. Gelte b ≥ 2.

Dann beträgt der Zeitaufwand der iterativen Tiefensuche

(d + 1) + db + (d − 1)b2 + (d − 2)b3 + · · ·+ 1bd = O(bd)

und der Speicheraufwand beträgt

O(bd)

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Iterative Tiefensuche: Bewertung

Iterative Tiefensuche: Bewertung

 Iterative Tiefensuche ist oft die Methode der Wahl, wenn

Baumsuche angemessen (keine Duplikateliminierung nötig) ist

und die Lösungstiefe unbekannt ist.

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Blinde Suche: Zusammenfassung

Tiefensuche Iterative Tiefensuche Blinde Suche: Zusammenfassung

Vergleich blinder Suchalgorithmen

Vollständigkeit, Optimalität, Zeit- und Speicheraufwand

Kriterium Breiten- uniforme Tiefen- tiefen- iterative

suche Kostensuche suche beschr. S. Tiefensuche

vollständig? ja* ja nein nein semi

optimal? ja** ja nein nein ja**

Zeit O(bd) O(b1+bc
∗/εc) O(bm) O(b`) O(bd)

Speicher O(bd) O(b1+bc
∗/εc) O(bm) O(b`) O(bd)

b ≥ 2 Verzweigungsgrad
d min. Lösungstiefe
m max. Suchtiefe
` Tiefenschranke

c∗ optimale Lösungskosten
ε > 0 min. Aktionskosten

Anmerkungen:
* für BFS-Tree: semi-vollständig
** nur mit uniformen Aktionskosten

	Tiefensuche
	

	Iterative Tiefensuche
	

	Blinde Suche: Zusammenfassung
	

