Grundlagen der Kiinstlichen Intelligenz

9. Klassische Suche: Tiefensuche und iterative Tiefensuche

Malte Helmert

Universitat Basel

21. Marz 2014

Klassische Suche: Uberblick

Kapiteliiberblick klassische Suche:

@ 3.-5. Einfiihrung
e 6.—9. Basisalgorithmen

e 6. Datenstrukturen fiir Suchalgorithmen
e 7. Baumsuche und Graphensuche

e 8. Breitensuche und uniforme Kostensuche
e 9. Tiefensuche und iterative Tiefensuche

o folgende Kapitel: heuristische Algorithmen

Tiefensuche

Tiefensuche
0®00000000

Blinde Suchalgorithmen: Beispiele

Beispiele fiir blinde Suchalgorithmen:

Breitensuche

uniforme Kostensuche
Tiefensuche
tiefenbeschrankte Suche

iterative Tiefensuche

Tiefensuche
0®00000000

Blinde Suchalgorithmen: Beispiele

Beispiele fiir blinde Suchalgorithmen:
@ Breitensuche
@ uniforme Kostensuche
e Tiefensuche (~ dieses Kapitel)
o tiefenbeschrankte Suche (~~ dieses Kapitel)

e iterative Tiefensuche (~~ dieses Kapitel)

Tiefensuche
00®0000000

Tiefensuche

Tiefensuche expandiert Knoten in umgekehrter
Erzeugungsreihenfolge (LIFO).

~> tiefster Knoten zuerst expandiert

~ z.B. Open-Liste als Stack implementiert

Tiefensuche
000®000000

Tiefensuche: Beispiel

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

© e

Tiefensuche
000®000000

Tiefensuche: Beispiel

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

Lt
EER Ry i

Tiefensuche
000®000000

Tiefensuche: Beispiel

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

®

Py
o

L
St

Tiefensuche
000®000000

Tiefensuche: Beispiel

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

D
%08
DD

Tiefensuche
0000®00000

Tiefensuche: einige Eigenschaften

o fast immer als Baumsuche implementiert
(wir werden sehen, warum)

@ nicht vollstandig, nicht semi-vollstandig, nicht optimal
(Warum?)

@ vollstandig fiir azyklische Zustandsraume,
z. B. wenn Zustandsraum gerichteter Baum

Tiefensuche
00000e0000

Erinnerung: generischer Baumsuchalgorithmus

Erinnerung aus Kapitel 7:

Generische Baumsuche

open := new OpenlList
open.insert(make_root_node())
while not open.is_empty():
n = open.pop()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
open.insert(n’)
return unsolvable

Tiefensuche

000000e000

Tiefensuche (nicht-rekursive Version)

Tiefensuche (nicht-rekursive Version):

Tiefensuche (nicht-rekursive Version)

open := new Stack
open.push_back(make_root_node())
while not open.is_empty():
n = open.pop_back()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
open.push_back(n’)
return unsolvable

Tiefensuche
0000000e00

Nicht-rekursive Tiefensuche: Diskussion

Diskussion:

@ es ist nicht viel falsch mit dem Code
(sofern man aufpasst, nicht mehr bendtigte Knoten freizugeben,

wenn die Programmiersprache keine Garbage-Collection beinhaltet)

o Tiefensuche als rekursiver Algorithmus
ist aber einfacher und effizienter

~> Maschinen-Stack als implizite Open-Liste

~ keine Suchknoten-Datenstruktur nétig

Tiefensuche
000000000

Tiefensuche (rekursive Version)

function depth first_search(s)

if is_goal(s):
return ()
for each (a,s’) € succ(s):
solution := depth first_search(s’)
if solution # none:
solution.push_front(a)
return solution
return none

Hauptfunktion:

Tiefensuche (rekursive Version)

return depth_first_search(init())

Tiefensuche
000000000e

Tiefensuche: Aufwand

Zeitaufwand:

@ Wenn der Zustandsraum Pfade der Lange m enthilt,
kann die Tiefensuche O(b™) Knoten erzeugen,
selbst wenn sehr kurze Losungen (z. B. Lénge 1) existieren

@ Andererseits: im besten Fall konnen Lésungen der Lange /¢
mit O(bl) erzeugten Knoten gefunden werden. (Warum?)

e verbesserbar auf O(/), wenn inkrementelle
Nachfolgerberechnung moglich

Tiefensuche
000000000e

Tiefensuche: Aufwand

Zeitaufwand:

@ Wenn der Zustandsraum Pfade der Lange m enthilt,
kann die Tiefensuche O(b™) Knoten erzeugen,
selbst wenn sehr kurze Losungen (z. B. Lénge 1) existieren
@ Andererseits: im besten Fall konnen Lésungen der Lange /¢
mit O(bl) erzeugten Knoten gefunden werden. (Warum?)
e verbesserbar auf O(/), wenn inkrementelle
Nachfolgerberechnung moglich

Speicheraufwand:

@ muss nur Knoten entlang aktuell exploriertem Pfad speichern
(“entlang” = Knoten auf dem Pfad und deren Kinder)

Tiefensuche
000000000e

Tiefensuche: Aufwand

Zeitaufwand:

@ Wenn der Zustandsraum Pfade der Lange m enthilt,
kann die Tiefensuche O(b™) Knoten erzeugen,
selbst wenn sehr kurze Losungen (z. B. Lénge 1) existieren

@ Andererseits: im besten Fall konnen Lésungen der Lange /¢
mit O(bl) erzeugten Knoten gefunden werden. (Warum?)

e verbesserbar auf O(/), wenn inkrementelle
Nachfolgerberechnung moglich

Speicheraufwand:

@ muss nur Knoten entlang aktuell exploriertem Pfad speichern
(“entlang” = Knoten auf dem Pfad und deren Kinder)

~~ Speicheraufwand O(bm) wenn m maximale erreichte Suchtiefe

Tiefensuche
000000000e

Tiefensuche: Aufwand

Zeitaufwand:

@ Wenn der Zustandsraum Pfade der Lange m enthilt,
kann die Tiefensuche O(b™) Knoten erzeugen,
selbst wenn sehr kurze Losungen (z. B. Lénge 1) existieren

@ Andererseits: im besten Fall konnen Lésungen der Lange /¢
mit O(bl) erzeugten Knoten gefunden werden. (Warum?)

e verbesserbar auf O(/), wenn inkrementelle
Nachfolgerberechnung moglich

Speicheraufwand:

@ muss nur Knoten entlang aktuell exploriertem Pfad speichern
(“entlang” = Knoten auf dem Pfad und deren Kinder)

~~ Speicheraufwand O(bm) wenn m maximale erreichte Suchtiefe

@ dieser niedrige Speicherbedarf ist der Hauptgrund,
warum Tiefensuche trotz ihrer Nachteile interessant ist

lterative Tiefensuche

Iterative Tiefensuche
[e] elelololelele)

Tiefenbeschrankte Suche

Tiefenbeschrankte Suche:

o Tiefensuche, die alle Suchknoten in einer gegebenen Tiefe n
abschneidet (nicht weiter expandiert)

~~ fiir sich allein nicht sehr niitzlich,
aber wichtige Zutat in niitzlicheren Suchalgorithmen

Iterative Tiefensuche
00®000000

Tiefenbeschrankte Suche: Pseudo-Code

function depth_limited_search(s, depth_limit):

if is_goal(s):
return ()
if depth_limit > 0:
for each (a,s’) € succ(s):
solution := depth_limited_search(s’, depth_limit — 1)
if solution # none:
solution.push_front(a)
return solution
return none

Iterative Tiefensuche
000®00000

Iterative Tiefensuche

Iterative Tiefensuche:

@ |dee: fiihre eine Folge tiefenbeschrankter Suchen
mit ansteigenden Tiefenschranken aus

o klingt verschwenderisch (jede Iteration wiederholt
die gesamte vorher geleistete Arbeit), aber tatsichlich
ist der Aufwand vertretbar (~~ Analyse folgt)

Iterative Tiefensuche

for depth_limit € {0,1,2,...}:
solution := depth_limited_search(init()), depth_limit)
if solution # none:
return solution

Iterative Tiefensuche
[ele]ele] Tolelele)

Iterative Tiefensuche: Eigenschaften

Kombiniert Vorteile von Breiten- und Tiefensuche:
e (fast) wie BFS: semi-vollstandig (allerdings nicht vollstandig)
o wie BFS: optimal wenn alle Aktionen dieselben Kosten haben

@ wie DFS: muss nur Knoten entlang eines Pfades speichern
~ Speicheraufwand O(bd), wobei d minimale Lésungsléange

o Zeitaufwand kaum hoher als BFS (~~ siehe Analyse spater)

Iterative Tiefensuche
000008000

Iterative Tiefensuche: Beispiel

Limit=0 *® [

Iterative Tiefensuche
000008000

Iterative Tiefensuche: Beispiel

Limit=0 *Q []

Iterative Tiefensuche: Beispiel

e
£ A
£

a0 o elod)
T

Iterative Tiefensuche
000000®00

Iterative Tiefensuche: Beispiel fiir den Aufwand

Zeitaufwand (erzeugte Knoten):

Breitensuche 14+ b4+b2 4+ pd-1 4 pd
Iterative Tiefensuche | (d + 1)+ db+ (d — 1)b? + - - +2b9~1 + 1b9

Beispiel: b=10, d =5

Breitensuche 1+ 10+ 100 + 1000 + 10000 + 100000
=111111

Iterative Tiefensuche | 6 + 50 + 400 + 3000 + 20000 + 100000
= 123456

fir b= 11, nur 11% mehr Knoten als mit Breitensuche

Iterative Tiefensuche
0000000e0

Iterative Tiefensuche: Zeitaufwand

Satz (Zeitaufwand der iterativen Tiefensuche)

Sei b der maximale Verzweigungsgrad und d die minimale
Lésungslange des betrachteten Zustandsraums. Gelte b > 2.

Dann betragt der Zeitaufwand der iterativen Tiefensuche
(d+1)+db+ (d —1)b? + (d — 2)b> + - -- + 169 = O(bY)

und der Speicheraufwand betragt

O(bd)

Iterative Tiefensuche
00000000e

Iterative Tiefensuche: Bewertung

Iterative Tiefensuche: Bewertung

~~ |terative Tiefensuche ist oft die Methode der Wahl, wenn
@ Baumsuche angemessen (keine Duplikateliminierung nétig) ist

@ und die Losungstiefe unbekannt ist.

Blinde Suche: Zusammenfassung

Blinde Suche: Zusammenfassung
oce

Vergleich blinder Suchalgorithmen

Vollstandigkeit, Optimalitdt, Zeit- und Speicheraufwand J
Kriterium Breiten- uniforme Tiefen- tiefen- iterative
suche Kostensuche suche beschr. S. Tiefensuche
vollstandig? ja* ja nein nein semi
optimal? ja* ja nein nein ja™*
Zeit o(b?) O(bttle"/ely o(b™) o(b%) o(b9)
Speicher o(b%) O(bitle"/ely O(bm) 0o(bt) O(bd)
b>2 Verzweigungsgrad *Anmerkungen:

d min. Lsungstiefe fiir BFS-Tree: semi-vollstiandig

m max. Suchtiefe ** nur mit uniformen Aktionskosten

¢ Tiefenschranke

c* optimale Lésungskosten

e >0 min. Aktionskosten

	Tiefensuche
	

	Iterative Tiefensuche
	

	Blinde Suche: Zusammenfassung
	

