Grundlagen der Kiinstlichen Intelligenz

8. Klassische Suche: Breitensuche und uniforme Kostensuche

Malte Helmert

Universitat Basel

17. Marz 2014

Klassische Suche: Uberblick

Kapiteliiberblick klassische Suche:

@ 3.-5. Einfiihrung
o 6.—9. Basisalgorithmen

e 6. Datenstrukturen fiir Suchalgorithmen
e 7. Baumsuche und Graphensuche

e 8. Breitensuche und uniforme Kostensuche
e 9. Tiefensuche und iterative Tiefensuche

o folgende Kapitel: heuristische Algorithmen

Blinde Suche

Blinde Suche
oeo

Blinde Suche

In den folgenden beiden Kapiteln betrachten wir
blinde Suchalgorithmen:

blinde Suchalgorithmen

Blinde Suchalgorithmen verwenden keine Informationen
iber Zustandsrdume ausser dem Black-Box-Interface.

Sie werden auch uninformierte Suchalgorithmen genannt.

vergleiche: heuristische Suchalgorithmen (ab Kapitel 10)

Blinde Suche
ooe

Blinde Suchalgorithmen: Beispiele

Beispiele fiir blinde Suchalgorithmen:
@ Breitensuche
@ uniforme Kostensuche
@ Tiefensuche
o tiefenbeschrénkte Suche

@ iterative Tiefensuche

Blinde Suche
ooe

Blinde Suchalgorithmen: Beispiele

Beispiele fiir blinde Suchalgorithmen:
@ Breitensuche (~ dieses Kapitel)
@ uniforme Kostensuche (~ dieses Kapitel)
o Tiefensuche
o tiefenbeschrankte Suche

@ iterative Tiefensuche

Blinde Suche
ooe

Blinde Suchalgorithmen: Beispiele

Beispiele fiir blinde Suchalgorithmen:
@ Breitensuche (~ dieses Kapitel)
@ uniforme Kostensuche (~ dieses Kapitel)
o Tiefensuche (~ nichstes Kapitel)
o tiefenbeschrankte Suche (~~ nichstes Kapitel)

o iterative Tiefensuche (~~ nachstes Kapitel)

Breitensuche: Einfiihrung

BFS: Einfiihrung
o] Yo}

Breitensuche

Breitensuche expandiert Knoten in Erzeugungsreihenfolge (FIFO).
~» z.B. Open-Liste als verkettete Liste oder Deque

>®

BFS: Einfiihrung
o] Yo}

Breitensuche

Breitensuche expandiert Knoten in Erzeugungsreihenfolge (FIFO).
~» z.B. Open-Liste als verkettete Liste oder Deque

>®

BFS: Einfiihrung
o] Yo}

Breitensuche

Breitensuche expandiert Knoten in Erzeugungsreihenfolge (FIFO).
~» z.B. Open-Liste als verkettete Liste oder Deque

>®

@ ®

BFS: Einfiihrung
o] Yo}

Breitensuche

Breitensuche expandiert Knoten in Erzeugungsreihenfolge (FIFO).
~» z.B. Open-Liste als verkettete Liste oder Deque

>®

@ ® PO ® G ©

BFS: Einfiihrung
o] Yo}

Breitensuche

Breitensuche expandiert Knoten in Erzeugungsreihenfolge (FIFO).
~» z.B. Open-Liste als verkettete Liste oder Deque

>®

@ ® PO ® G ©

@ durchsucht Zustandsraum ebenenweise

@ findet immer flachsten Zielzustand zuerst

BFS: Einfiihrung
ocoe

Breitensuche: Baumsuche oder Graphensuche?

Breitensuche kann

@ ohne Duplikateliminierung (als Baumsuche)
~» BFS-Tree

e oder mit Duplikateliminierung (als Graphensuche)
~» BFS-Graph

durchgefiihrt werden.

~~ Wir betrachten beide Varianten.

BFS-Tree

BFS-Tree
0®00000

Erinnerung: generischer Baumsuchalgorithmus

Erinnerung aus Kapitel 7:

Generische Baumsuche

open := new OpenList
open.insert(make_root_node())
while not open.is_empty():
n = open.pop()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
open.insert(n’)
return unsolvable

BFS-Tree
00®0000

BFS-Tree (1. Versuch)

Breitensuche ohne Duplikateliminierung (1. Versuch):

BFS-Tree (1. Versuch)

open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n = open.pop_front()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
open.push_back(n’)
return unsolvable

BFS-Tree
000®000

BFS-Tree (1. Versuch): Diskussion

Das ist schon fast ein brauchbarer Algorithmus,
aber er verschwendet etwas Zeit:

@ In einer Breitensuche ist der erste erzeugte Zielknoten
auch immer der erster expandierte Zielknoten. (\Warum?)

@ Daher ist es effizienter, den Zieltest bereits durchzufiihren,
wenn ein Knoten erzeugt wird
(nicht erst, wenn er expandiert wird).

~> Wieviel Zeit spart das?

BFS-Tree
0000®00

BFS-Tree (2. Versuch)

Breitensuche ohne Duplikateliminierung (2. Versuch):

BFS-Tree (2. Versuch)

open := new Deque
open.push_back(make_root_node())
while not open.is_empty():

n = open.pop_front()

for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
if is_goal(s’):
return extract_path(n’)
open.push_back(n")
return unsolvable

BFS-Tree
000000

BFS-Tree (2. Versuch): Diskussion

Wo ist der Bug?

BFS-Tree

O00000e

BFS-Tree (endgiiltige Version)

Breitensuche ohne Duplikateliminierung (endgiiltige Version):

BFS-Tree

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n = open.pop_front()
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
if is_goal(s’):
return extract_path(n’)
open.push_back(n’)
return unsolvable

BFS-Tree

O00000e

BFS-Tree (endgiiltige Version)

Breitensuche ohne Duplikateliminierung (endgiiltige Version):

BFS-Tree

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n = open.pop_front()
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
if is_goal(s’):
return extract_path(n’)
open.push_back(n’)
return unsolvable

BFS-Graph

BFS-Graph

lo] Jele}

Erinnerung: generischer Graphensuchalgorithmus

Erinnerung aus Kapitel 7:

Generische Graphensuche

open := new OpenlList
open.insert(make_root_node())
closed := new ClosedList
while not open.is_empty():
n = open.pop()
if closed.lookup(n.state) = none:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s")
open.insert(n’)
return unsolvable

BFS-Graph
coeo

Anpassung der generischen Graphensuche fiir Breitensuche

Anpassung der generischen Graphensuche fiir Breitensuche:

@ analoge Anpassungen zu BFS-Tree
(Deque als Open-Liste, friiher Zieltest)

@ da Closed-Liste hier nur zur Duplikaterkennung dient,
nicht zur Verwaltung von Knoteninformationen,
reicht eine Mengen-Datenstruktur aus

@ aus denselben Griinden, warum frithe Zieltests sinnvoll sind,
sollten wir Duplikattests gegen die Closed-Liste
und Updates der Closed-Liste so frilh wie moglich vornehmen

BFS-Graph
O 00O0e

BFS-Graph (Breitensuche mit Duplikateliminierung)

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
closed := new HashSet
closed.insert(init())
while not open.is_empty():
n = open.pop_front()
for each (a, s’) € succ(n.state):
n’ := make_node(n, a, s’)
if is_goal(s’):
return extract_path(n’)
if s’ ¢ closed.:
closed.insert(s’)
open.push_back(n’)
return unsolvable

Eigenschaften der Breitensuche

BFS-Eigenschaften
©0®000

Eigenschaften der Breitensuche

Eigenschaften der Breitensuche:

@ BFS-Tree ist semi-vollstdndig,
aber nicht vollstandig (Warum?)

e BFS-Graph ist vollstandig (\Warum?)

e BFS (beide Varianten) ist optimal,
wenn alle Aktionen dieselben Kosten haben (Warum?),
aber nicht im allgemeinen Fall (Warum nicht?)

e Aufwand: folgende Folien

BFS-Eigenschaften
©0®00

Breitensuche: Aufwand

Das folgende Ergebnis gilt fiir beide BFS-Varianten:

Satz (Zeitaufwand der Breitensuche)

Sei b der maximale Verzweigungsgrad und d die minimale
Lésungslange des gegebenen Zustandsraums. Sei b > 2.

Dann betragt der Zeitaufwand der Breitensuche

1+b+ b+ b+ 4 b= 0(b7)

Erinnerung: wir messen Zeitaufwand in erzeugten Knoten

Es folgt, dass der Speicheraufwand beider BFS-Varianten
ebenfalls O(b?) ist (falls b > 2). (Warum?)

BFS-Eigenschaften
[eleTe] Yo}

Breitensuche: Beispiel fiir den Aufwand

Beispiel: b= 10; 100’000 Knoten/Sekunde; 32 Bytes/Knoten

d | Knoten Zeit Speicher
3 1'111 | 0.0L s 35 KiB
51 111'111 ls 3.4 MiB
7 107 2 min 339 MiB
9 10° 3h 33 GiB
11 101! 13 Tage | 3.2 TiB
13 1013 | 3.5 Jahre | 323 TiB
15 10> | 350 Jahre | 32 PiB

BFS-Eigenschaften
ooooe

BFS-Tree oder BFS-Graph?

Was ist besser, BFS-Tree oder BFS-Graph?

BFS-Eigenschaften
ooooe

BFS-Tree oder BFS-Graph?

Was ist besser, BFS-Tree oder BFS-Graph?

Vorteile von BFS-Graph:
@ vollstandig

o viel (!) effizienter, wenn es viele Duplikate gibt

BFS-Eigenschaften
ooooe

BFS-Tree oder BFS-Graph?

Was ist besser, BFS-Tree oder BFS-Graph?

Vorteile von BFS-Graph:
@ vollstandig

o viel (!) effizienter, wenn es viele Duplikate gibt

Vorteile von BFS-Tree:
@ einfacher

e weniger Overhead (Zeit/Platz), wenn wenige/keine Duplikate

BFS-Eigenschaften
ooooe

BFS-Tree oder BFS-Graph?

Was ist besser, BFS-Tree oder BFS-Graph?

Vorteile von BFS-Graph:
@ vollstandig

o viel (!) effizienter, wenn es viele Duplikate gibt

Vorteile von BFS-Tree:
@ einfacher

e weniger Overhead (Zeit/Platz), wenn wenige/keine Duplikate

Schlussfolgerung

BFS-Graph ist normalerweise zu bevorzugen,
es sei denn wir wissen, dass es im gegebenen Zustandsraum
vernachlassigbar wenige Duplikate gibt.

Uniforme Kostensuche

Uniforme Kostensuche
0®000000

Uniforme Kostensuche

@ Breitensuche optimal, wenn alle Aktionskosten gleich

@ sonst Optimalitat nicht garantiert ~» Beispiel:

Sibiu 0 Fagaras

Bucharest

Uniforme Kostensuche
0®000000

Uniforme Kostensuche

@ Breitensuche optimal, wenn alle Aktionskosten gleich

@ sonst Optimalitat nicht garantiert ~» Beispiel:

Sibiu 0 Fagaras

Bucharest

Abhilfe: uniforme Kostensuche

@ expandiere immer Knoten mit minimalen Pfadkosten
(n.path_cost alias g(n))

@ Implementierung: Prioritatswarteschlange (Min-Heap)
fiir Open-Liste

BFS: Einfiihrung B S-Graph chaften Uniforme Kostensuche Zusammenfassung
o 00®00000

Erinnerung: generischer Graphensuchalgorithmus

Erinnerung aus Kapitel 7:

Generische Graphensuche

open := new OpenlList
open.insert(make_root_node())
closed := new ClosedList
while not open.is_empty():
n = open.pop()
if closed.lookup(n.state) = none:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s")
open.insert(n’)
return unsolvable

Uniforme Kostensuche
[e]ele] Tolelele)

Uniforme Kostensuche

Uniforme Kostensuche

open := new MinHeap ordered by g
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n = open.pop_min()
if n.state ¢ closed:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s")
open.insert(n’)
return unsolvable

Uniforme Kostensuche
0000®000

Uniforme Kostensuche: Diskussion

Anpassung der generischen Graphensuche
fiir uniforme Kostensuche:
@ hier waren friihe Zieltests/frithe Updates der Closed-Liste
keine gute ldee. (Warum nicht?)
@ wie in BFS-Graph reicht eine Menge fiir die Closed-Liste aus
@ eine Baumsuchvariante ist moglich, aber selten:
dieselben Nachteile wie BFS-Tree und im allgemeinen
nicht einmal semi-vollstandig (Warum nicht?)
Anmerkung: identisch mit Dijkstras Algorithmus
fiir kiirzeste Pfade in gewichteten Graphen!

Uniforme Kostensuche
00000®00

Uniforme Kostensuche: Verbesserungen

Mogliche Verbesserungen:

@ wenn Aktionskosten kleine Ganzzahlen sind,
sind Bucket-Heaps oft effizienter

@ zusatzliche frithe Duplikatstests fiir erzeugten Knoten
kénnen Speicheraufwand reduzieren
und Laufzeit verbessern oder verschlechtern

Uniforme Kostensuche
000000e0

Eigenschaften der uniformen Kostensuche (1)

Eigenschaften der uniformen Kostensuche:
e uniforme Kostensuche ist vollstandig (Warum?)

e uniforme Kostensuche ist optimal (Warum?)

Uniforme Kostensuche
0000000e

Eigenschaften der uniformen Kostensuche (2)

Eigenschaften der uniformen Kostensuche:

o Zeitaufwand hangt von Verteilung der Aktionskosten ab
(keine einfachen und genauen Schranken).
o Sei £ := min,ea cost(a) und gelte € > 0.
Seien ¢* die optimalen Lésungskosten.
Sei b der Verzweigungsgrad und gelte b > 2.
Dann betrigt der Zeitaufwand hochstens O(ble™/¢1+1).
(Warum?)
o oft eine sehr schwache obere Schranke

@ Speicheraufwand = Zeitaufwand

Zusammenfassung

Zusammenfassung
oe

Zusammenfassung

@ blinde Suchverfahren: verwenden keine Informationen
ausser Black-Box-Interface des Zustandsraums
@ Breitensuche: expandiere Knoten in Erzeugungsreihenfolge
e durchsucht Zustandsraum ebenenweise
e als Baumsuche oder als Graphensuche moglich
o Aufwand O(b?) bei Verzweigungsgrad b,
minimale Lésungslinge d (falls b > 2)
e vollstandig als Graphensuche; semi-vollstdndig als Baumsuche
e optimal bei einheitlichen Aktionskosten

@ uniforme Kostensuche: expandiere Knoten
in Reihenfolge aufsteigender Pfadkosten

o Ublicherweise als Graphensuche
e vollstandig und optimal

	Blinde Suche
	Breitensuche: Einführung
	BFS-Tree
	BFS-Graph
	Eigenschaften der Breitensuche
	Uniforme Kostensuche
	Zusammenfassung

