
Grundlagen der Künstlichen Intelligenz
8. Klassische Suche: Breitensuche und uniforme Kostensuche

Malte Helmert

Universität Basel

17. März 2014

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Klassische Suche: Überblick

Kapitelüberblick klassische Suche:

3.–5. Einführung

6.–9. Basisalgorithmen

6. Datenstrukturen für Suchalgorithmen
7. Baumsuche und Graphensuche
8. Breitensuche und uniforme Kostensuche
9. Tiefensuche und iterative Tiefensuche

folgende Kapitel: heuristische Algorithmen

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Blinde Suche

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Blinde Suche

In den folgenden beiden Kapiteln betrachten wir
blinde Suchalgorithmen:

blinde Suchalgorithmen

Blinde Suchalgorithmen verwenden keine Informationen
über Zustandsräume ausser dem Black-Box-Interface.

Sie werden auch uninformierte Suchalgorithmen genannt.

vergleiche: heuristische Suchalgorithmen (ab Kapitel 10)

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Blinde Suchalgorithmen: Beispiele

Beispiele für blinde Suchalgorithmen:

Breitensuche

(dieses Kapitel)

uniforme Kostensuche

(dieses Kapitel)

Tiefensuche

(nächstes Kapitel)

tiefenbeschränkte Suche

(nächstes Kapitel)

iterative Tiefensuche

(nächstes Kapitel)

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Blinde Suchalgorithmen: Beispiele

Beispiele für blinde Suchalgorithmen:

Breitensuche (dieses Kapitel)

uniforme Kostensuche (dieses Kapitel)

Tiefensuche

(nächstes Kapitel)

tiefenbeschränkte Suche

(nächstes Kapitel)

iterative Tiefensuche

(nächstes Kapitel)

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Blinde Suchalgorithmen: Beispiele

Beispiele für blinde Suchalgorithmen:

Breitensuche (dieses Kapitel)

uniforme Kostensuche (dieses Kapitel)

Tiefensuche (nächstes Kapitel)

tiefenbeschränkte Suche (nächstes Kapitel)

iterative Tiefensuche (nächstes Kapitel)

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Breitensuche: Einführung

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Breitensuche

Breitensuche expandiert Knoten in Erzeugungsreihenfolge (FIFO).
 z. B. Open-Liste als verkettete Liste oder Deque

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

durchsucht Zustandsraum ebenenweise

findet immer flachsten Zielzustand zuerst

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Breitensuche

Breitensuche expandiert Knoten in Erzeugungsreihenfolge (FIFO).
 z. B. Open-Liste als verkettete Liste oder Deque

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

durchsucht Zustandsraum ebenenweise

findet immer flachsten Zielzustand zuerst

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Breitensuche

Breitensuche expandiert Knoten in Erzeugungsreihenfolge (FIFO).
 z. B. Open-Liste als verkettete Liste oder Deque

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

durchsucht Zustandsraum ebenenweise

findet immer flachsten Zielzustand zuerst

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Breitensuche

Breitensuche expandiert Knoten in Erzeugungsreihenfolge (FIFO).
 z. B. Open-Liste als verkettete Liste oder Deque

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

durchsucht Zustandsraum ebenenweise

findet immer flachsten Zielzustand zuerst

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Breitensuche

Breitensuche expandiert Knoten in Erzeugungsreihenfolge (FIFO).
 z. B. Open-Liste als verkettete Liste oder Deque

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

durchsucht Zustandsraum ebenenweise

findet immer flachsten Zielzustand zuerst

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Breitensuche: Baumsuche oder Graphensuche?

Breitensuche kann

ohne Duplikateliminierung (als Baumsuche)
 BFS-Tree

oder mit Duplikateliminierung (als Graphensuche)
 BFS-Graph

durchgeführt werden.

 Wir betrachten beide Varianten.

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

BFS-Tree

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Erinnerung: generischer Baumsuchalgorithmus

Erinnerung aus Kapitel 7:

Generische Baumsuche

open := new OpenList
open.insert(make root node())
while not open.is empty():

n = open.pop()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

BFS-Tree (1. Versuch)

Breitensuche ohne Duplikateliminierung (1. Versuch):

BFS-Tree (1. Versuch)

open := new Deque
open.push back(make root node())
while not open.is empty():

n = open.pop front()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

BFS-Tree (1. Versuch): Diskussion

Das ist schon fast ein brauchbarer Algorithmus,
aber er verschwendet etwas Zeit:

In einer Breitensuche ist der erste erzeugte Zielknoten
auch immer der erster expandierte Zielknoten. (Warum?)

Daher ist es effizienter, den Zieltest bereits durchzuführen,
wenn ein Knoten erzeugt wird
(nicht erst, wenn er expandiert wird).

 Wieviel Zeit spart das?

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

BFS-Tree (2. Versuch)

Breitensuche ohne Duplikateliminierung (2. Versuch):

BFS-Tree (2. Versuch)

open := new Deque
open.push back(make root node())
while not open.is empty():

n = open.pop front()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

BFS-Tree (2. Versuch): Diskussion

Wo ist der Bug?

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

BFS-Tree (endgültige Version)

Breitensuche ohne Duplikateliminierung (endgültige Version):

BFS-Tree

if is goal(init()):
return 〈〉

open := new Deque
open.push back(make root node())
while not open.is empty():

n = open.pop front()
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

BFS-Tree (endgültige Version)

Breitensuche ohne Duplikateliminierung (endgültige Version):

BFS-Tree

if is goal(init()):
return 〈〉

open := new Deque
open.push back(make root node())
while not open.is empty():

n = open.pop front()
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
open.push back(n′)

return unsolvable

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

BFS-Graph

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Erinnerung: generischer Graphensuchalgorithmus

Erinnerung aus Kapitel 7:

Generische Graphensuche

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n = open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Anpassung der generischen Graphensuche für Breitensuche

Anpassung der generischen Graphensuche für Breitensuche:

analoge Anpassungen zu BFS-Tree
(Deque als Open-Liste, früher Zieltest)

da Closed-Liste hier nur zur Duplikaterkennung dient,
nicht zur Verwaltung von Knoteninformationen,
reicht eine Mengen-Datenstruktur aus

aus denselben Gründen, warum frühe Zieltests sinnvoll sind,
sollten wir Duplikattests gegen die Closed-Liste
und Updates der Closed-Liste so früh wie möglich vornehmen

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

BFS-Graph (Breitensuche mit Duplikateliminierung)

BFS-Graph

if is goal(init()):
return 〈〉

open := new Deque
open.push back(make root node())
closed := new HashSet
closed.insert(init())
while not open.is empty():

n = open.pop front()
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
if is goal(s ′):

return extract path(n′)
if s ′ /∈ closed:

closed.insert(s ′)
open.push back(n′)

return unsolvable

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Eigenschaften der Breitensuche

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Eigenschaften der Breitensuche

Eigenschaften der Breitensuche:

BFS-Tree ist semi-vollständig,
aber nicht vollständig (Warum?)

BFS-Graph ist vollständig (Warum?)

BFS (beide Varianten) ist optimal,
wenn alle Aktionen dieselben Kosten haben (Warum?),
aber nicht im allgemeinen Fall (Warum nicht?)

Aufwand: folgende Folien

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Breitensuche: Aufwand

Das folgende Ergebnis gilt für beide BFS-Varianten:

Satz (Zeitaufwand der Breitensuche)

Sei b der maximale Verzweigungsgrad und d die minimale
Lösungslänge des gegebenen Zustandsraums. Sei b ≥ 2.

Dann beträgt der Zeitaufwand der Breitensuche

1 + b + b2 + b3 + · · ·+ bd = O(bd)

Erinnerung: wir messen Zeitaufwand in erzeugten Knoten

Es folgt, dass der Speicheraufwand beider BFS-Varianten
ebenfalls O(bd) ist (falls b ≥ 2). (Warum?)

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Breitensuche: Beispiel für den Aufwand

Beispiel: b = 10; 100’000 Knoten/Sekunde; 32 Bytes/Knoten

d Knoten Zeit Speicher

3 1’111 0.01 s 35 KiB

5 111’111 1 s 3.4 MiB

7 107 2 min 339 MiB

9 109 3 h 33 GiB

11 1011 13 Tage 3.2 TiB

13 1013 3.5 Jahre 323 TiB

15 1015 350 Jahre 32 PiB

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

BFS-Tree oder BFS-Graph?

Was ist besser, BFS-Tree oder BFS-Graph?

Vorteile von BFS-Graph:

vollständig

viel (!) effizienter, wenn es viele Duplikate gibt

Vorteile von BFS-Tree:

einfacher

weniger Overhead (Zeit/Platz), wenn wenige/keine Duplikate

Schlussfolgerung

BFS-Graph ist normalerweise zu bevorzugen,
es sei denn wir wissen, dass es im gegebenen Zustandsraum
vernachlässigbar wenige Duplikate gibt.

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

BFS-Tree oder BFS-Graph?

Was ist besser, BFS-Tree oder BFS-Graph?

Vorteile von BFS-Graph:

vollständig

viel (!) effizienter, wenn es viele Duplikate gibt

Vorteile von BFS-Tree:

einfacher

weniger Overhead (Zeit/Platz), wenn wenige/keine Duplikate

Schlussfolgerung

BFS-Graph ist normalerweise zu bevorzugen,
es sei denn wir wissen, dass es im gegebenen Zustandsraum
vernachlässigbar wenige Duplikate gibt.

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

BFS-Tree oder BFS-Graph?

Was ist besser, BFS-Tree oder BFS-Graph?

Vorteile von BFS-Graph:

vollständig

viel (!) effizienter, wenn es viele Duplikate gibt

Vorteile von BFS-Tree:

einfacher

weniger Overhead (Zeit/Platz), wenn wenige/keine Duplikate

Schlussfolgerung

BFS-Graph ist normalerweise zu bevorzugen,
es sei denn wir wissen, dass es im gegebenen Zustandsraum
vernachlässigbar wenige Duplikate gibt.

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

BFS-Tree oder BFS-Graph?

Was ist besser, BFS-Tree oder BFS-Graph?

Vorteile von BFS-Graph:

vollständig

viel (!) effizienter, wenn es viele Duplikate gibt

Vorteile von BFS-Tree:

einfacher

weniger Overhead (Zeit/Platz), wenn wenige/keine Duplikate

Schlussfolgerung

BFS-Graph ist normalerweise zu bevorzugen,
es sei denn wir wissen, dass es im gegebenen Zustandsraum
vernachlässigbar wenige Duplikate gibt.

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Uniforme Kostensuche

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Uniforme Kostensuche

Breitensuche optimal, wenn alle Aktionskosten gleich

sonst Optimalität nicht garantiert Beispiel:

Abhilfe: uniforme Kostensuche

expandiere immer Knoten mit minimalen Pfadkosten
(n.path cost alias g(n))

Implementierung: Prioritätswarteschlange (Min-Heap)
für Open-Liste

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Uniforme Kostensuche

Breitensuche optimal, wenn alle Aktionskosten gleich

sonst Optimalität nicht garantiert Beispiel:

Abhilfe: uniforme Kostensuche

expandiere immer Knoten mit minimalen Pfadkosten
(n.path cost alias g(n))

Implementierung: Prioritätswarteschlange (Min-Heap)
für Open-Liste

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Erinnerung: generischer Graphensuchalgorithmus

Erinnerung aus Kapitel 7:

Generische Graphensuche

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n = open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Uniforme Kostensuche

Uniforme Kostensuche

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n = open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Uniforme Kostensuche: Diskussion

Anpassung der generischen Graphensuche
für uniforme Kostensuche:

hier wären frühe Zieltests/frühe Updates der Closed-Liste
keine gute Idee. (Warum nicht?)

wie in BFS-Graph reicht eine Menge für die Closed-Liste aus

eine Baumsuchvariante ist möglich, aber selten:
dieselben Nachteile wie BFS-Tree und im allgemeinen
nicht einmal semi-vollständig (Warum nicht?)

Anmerkung: identisch mit Dijkstras Algorithmus
für kürzeste Pfade in gewichteten Graphen!

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Uniforme Kostensuche: Verbesserungen

Mögliche Verbesserungen:

wenn Aktionskosten kleine Ganzzahlen sind,
sind Bucket-Heaps oft effizienter

zusätzliche frühe Duplikatstests für erzeugten Knoten
können Speicheraufwand reduzieren
und Laufzeit verbessern oder verschlechtern

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Eigenschaften der uniformen Kostensuche (1)

Eigenschaften der uniformen Kostensuche:

uniforme Kostensuche ist vollständig (Warum?)

uniforme Kostensuche ist optimal (Warum?)

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Eigenschaften der uniformen Kostensuche (2)

Eigenschaften der uniformen Kostensuche:

Zeitaufwand hängt von Verteilung der Aktionskosten ab
(keine einfachen und genauen Schranken).

Sei ε := mina∈A cost(a) und gelte ε > 0.
Seien c∗ die optimalen Lösungskosten.
Sei b der Verzweigungsgrad und gelte b ≥ 2.
Dann beträgt der Zeitaufwand höchstens O(bbc

∗/εc+1).
(Warum?)
oft eine sehr schwache obere Schranke

Speicheraufwand = Zeitaufwand

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Zusammenfassung

Blinde Suche BFS: Einführung BFS-Tree BFS-Graph BFS-Eigenschaften Uniforme Kostensuche Zusammenfassung

Zusammenfassung

blinde Suchverfahren: verwenden keine Informationen
ausser Black-Box-Interface des Zustandsraums

Breitensuche: expandiere Knoten in Erzeugungsreihenfolge

durchsucht Zustandsraum ebenenweise
als Baumsuche oder als Graphensuche möglich
Aufwand O(bd) bei Verzweigungsgrad b,
minimale Lösungslänge d (falls b ≥ 2)
vollständig als Graphensuche; semi-vollständig als Baumsuche
optimal bei einheitlichen Aktionskosten

uniforme Kostensuche: expandiere Knoten
in Reihenfolge aufsteigender Pfadkosten

üblicherweise als Graphensuche
vollständig und optimal

	Blinde Suche
	Breitensuche: Einführung
	BFS-Tree
	BFS-Graph
	Eigenschaften der Breitensuche
	Uniforme Kostensuche
	Zusammenfassung

