Grundlagen der Kiinstlichen Intelligenz

7. Klassische Suche: Baumsuche und Graphensuche

Malte Helmert

Universitat Basel

17. Marz 2014



Klassische Suche: Uberblick

Kapiteliiberblick klassische Suche:

@ 3.-5. Einfiihrung
o 6.—9. Basisalgorithmen

e 6. Datenstrukturen fiir Suchalgorithmen
e 7. Baumsuche und Graphensuche

e 8. Breitensuche und uniforme Kostensuche
e 9. Tiefensuche und iterative Tiefensuche

o folgende Kapitel: heuristische Algorithmen



Einfiihrung



Einfiihrung
oce

Suchalgorithmen

Suchalgorithmen allgemein

@ Ausgehend vom Anfangszustand,

@ expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.

@ Hore auf, wenn ein Zielzustand expandiert wird

@ oder alle erreichbaren Zustande betrachtet wurden.




Einfiihrung
oce

Suchalgorithmen

Suchalgorithmen allgemein

@ Ausgehend vom Anfangszustand,

@ expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.

@ Hore auf, wenn ein Zielzustand expandiert wird

@ oder alle erreichbaren Zustande betrachtet wurden.

In diesem Kapitel betrachten wir zwei wesentliche Klassen
von Suchalgorithmen:

@ Baumsuche und

@ Graphensuche

(Zu jeder Klasse gehort eine Vielzahl konkreter Algorithmen.)



Baumsuche



Baumsuche
0®00

Baumsuche

Baumsuche

@ mogliche Pfade, die exploriert werden kénnen,
sind in einem Baum (Suchbaum) organisiert

@ Suchknoten entsprechen 1:1 den Pfaden vom Anfangszustand

@ Duplikate (auch: Transpositionen) sind moglich,
d. h. mehrere Knoten mit demselben Zustand

@ Suchbaum kann unbegrenzt in die Tiefe wachsen




Baumsuche
00®0

Generischer Baumsuchalgorithmus

Generische Baumsuche

open := new OpenlList
open.insert(make_root_node())
while not open.is_empty():
n = open.pop()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
open.insert(n’)
return unsolvable




Baumsuche
oooe

Generischer Baumsuchalgorithmus: Diskussion

Diskussion:
@ generisches Muster fiir Baumsuchalgorithmen

~ fiir konkreten Algorithmus miissen wir (mindestens)
entscheiden, wie Open-Liste implementiert wird

@ konkrete Algorithmen oft leicht anders implementiert
(aus Effizienzgriinden), folgen aber konzeptuell dem Muster
(= bauen denselben Suchbaum auf)



Graphensuche



Graphensuche
0®000

Erinnerung: Baumsuche

Erinnerung:

Baumsuche

@ mogliche Pfade, die exploriert werden konnen,
sind in einem Baum (Suchbaum) organisiert

@ Suchknoten entsprechen 1:1 den Pfaden vom Anfangszustand

@ Duplikate (auch: Transpositionen) sind moglich,
d. h. mehrere Knoten mit demselben Zustand

@ Suchbaum kann unbegrenzt in die Tiefe wachsen




Graphensuche
00®00

Graphensuche

Graphensuche

Unterschiede zur Baumsuche:

@ erkenne Duplikate: wenn ein Zustand auf mehreren Pfaden
erreichbar ist, erzeuge nur einen Suchknoten

@ Suchknoten entsprechen 1:1 den erreichbaren Zustanden

@ Suchbaum beschrankt, da es nur endlich viele Zustande gibt

v

Anmerkungen:

e einige Graphensuchalgorithmen (~ spiter)
eliminieren nicht alle Duplikate sofort

@ ein moglicher Grund: optimale Losungen finden,
wenn ein spater gefundener Pfad zum Zustand s
billiger ist als ein friither gefundener



Graphensuche
000®0

Generischer Graphensuchalgorithmus

Generische Graphensuche

open := new OpenlList
open.insert(make_root_node())
closed := new ClosedList
while not open.is_empty():
n = open.pop()
if closed.lookup(n.state) = none:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
open.insert(n’)
return unsolvable




Graphensuche
[efeTele] ]

Generischer Graphensuchalgorithmus: Diskussion

Diskussion:
o Kommentare zur Baumsuche gelten analog
@ im ,reinen” Algorithmus muss die Closed-Liste
nicht notwendigerweise die Suchknoten speichern

e es reicht, closed als Menge von Zustanden zu implementieren
o fortgeschrittene Algorithmen benétigen die Knoten,
daher ist hier gleich der allgemeine Fall dargestellt

@ einige Varianten fiihren Ziel- und Duplikatstests
an anderen Stellen (friiher) aus

~ Vorteile? Nachteile?



Bewertung von Suchalgorithmen



Bewertung von Suchalgorithmen
0®0000

Kriterien: Vollstandigkeit

Vier Kriterien fiir Bewertung von Suchalgorithmen:

Vollstandigkeit

Findet der Algorithmus garantiert eine Losung, wenn eine existiert?
Terminiert er, wenn keine Losung existiert?

erste Eigenschaft: semi-vollstidndig
beide Eigenschaften: vollstandig




Bewertung von Suchalgorithmen
[e]eY Yolole]

Kriterien: Optimalitat

Vier Kriterien fiir Bewertung von Suchalgorithmen:

Optimalitat
Sind die vom Algorithmus berechneten Lésungen immer optimal?




Bewertung von Suchalgorithmen

000e00

Kriterien: Zeitaufwand

Vier Kriterien fiir Bewertung von Suchalgorithmen:

Zeitaufwand

Wieviel Zeit bendtigt der Algorithmus, um eine Lésung zu finden?
@ iiblicherweise Worst-Case-Betrachtung

@ (iblicherweise gemessen in erzeugten Knoten

oft als Funktion der folgenden Grdssen:

e b: Verzweigungsgrad (branching factor) des Zustandsraums
(max. Anzahl Nachfolger eines Zustands)

e d: Suchtiefe (Lange des langsten Pfads
im erzeugten Suchbaum)



Bewertung von Suchalgorithmen

[eJelole] Je]

Kriterien: Speicheraufwand

Vier Kriterien fiir Bewertung von Suchalgorithmen:

Speicheraufwand

Wieviel Speicher bendtigt der Algorithmus,
um eine Losung zu finden?

@ iiblicherweise Worst-Case-Betrachtung

@ liblicherweise gemessen in gespeicherten Knoten

oft als Funktion der folgenden Grossen:

e b: Verzweigungsgrad (branching factor) des Zustandsraums
(max. Anzahl Nachfolger eines Zustands)

@ d: Suchtiefe (Lange des langsten Pfads
im erzeugten Suchbaum)



Bewertung von Suchalgorithmen
00000e

Analyse der generischen Suchalgorithmen

Generischer Baumsuchalgorithmus
@ Ist er vollstindig? Ist er semi-vollstandig?
@ Ist er optimal?
@ Was ist der Zeitaufwand im worst case?

@ Was ist der Speicheraufwand im worst case?

Generischer Graphensuchalgorithmus
@ Ist er vollstandig? Ist er semi-vollstandig?
@ Ist er optimal?
@ Was ist der Zeitaufwand im worst case?

@ Was ist der Speicheraufwand im worst case?



Zusammenfassung



Zusammenfassung
oe

Zusammenfassung

@ Baumsuche:
Suchknoten entsprechen 1:1 Pfaden vom Anfangszustand

@ Graphensuche:
Suchknoten entsprechen 1:1 erreichbaren Zustdnden
(~ Duplikateliminierung)

@ generische Verfahren mit vielen moglichen Varianten

@ Bewertung von Algorithmen:
e Vollstandigkeit und Semi-Vollstandigkeit
e Optimalitat
e Zeit- und Speicheraufwand



	Einführung
	Baumsuche
	Graphensuche
	Bewertung von Suchalgorithmen
	Zusammenfassung

