
Grundlagen der Künstlichen Intelligenz
7. Klassische Suche: Baumsuche und Graphensuche

Malte Helmert

Universität Basel

17. März 2014

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Klassische Suche: Überblick

Kapitelüberblick klassische Suche:

3.–5. Einführung

6.–9. Basisalgorithmen

6. Datenstrukturen für Suchalgorithmen
7. Baumsuche und Graphensuche
8. Breitensuche und uniforme Kostensuche
9. Tiefensuche und iterative Tiefensuche

folgende Kapitel: heuristische Algorithmen

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Einführung

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Suchalgorithmen

Suchalgorithmen allgemein

Ausgehend vom Anfangszustand,

expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.

Höre auf, wenn ein Zielzustand expandiert wird

oder alle erreichbaren Zustände betrachtet wurden.

In diesem Kapitel betrachten wir zwei wesentliche Klassen
von Suchalgorithmen:

Baumsuche und

Graphensuche

(Zu jeder Klasse gehört eine Vielzahl konkreter Algorithmen.)

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Suchalgorithmen

Suchalgorithmen allgemein

Ausgehend vom Anfangszustand,

expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.

Höre auf, wenn ein Zielzustand expandiert wird

oder alle erreichbaren Zustände betrachtet wurden.

In diesem Kapitel betrachten wir zwei wesentliche Klassen
von Suchalgorithmen:

Baumsuche und

Graphensuche

(Zu jeder Klasse gehört eine Vielzahl konkreter Algorithmen.)

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Baumsuche

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Baumsuche

Baumsuche

mögliche Pfade, die exploriert werden können,
sind in einem Baum (Suchbaum) organisiert

Suchknoten entsprechen 1:1 den Pfaden vom Anfangszustand

Duplikate (auch: Transpositionen) sind möglich,
d. h. mehrere Knoten mit demselben Zustand

Suchbaum kann unbegrenzt in die Tiefe wachsen

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Generischer Baumsuchalgorithmus

Generische Baumsuche

open := new OpenList
open.insert(make root node())
while not open.is empty():

n = open.pop()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Generischer Baumsuchalgorithmus: Diskussion

Diskussion:

generisches Muster für Baumsuchalgorithmen

 für konkreten Algorithmus müssen wir (mindestens)
entscheiden, wie Open-Liste implementiert wird

konkrete Algorithmen oft leicht anders implementiert
(aus Effizienzgründen), folgen aber konzeptuell dem Muster
(= bauen denselben Suchbaum auf)

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Graphensuche

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Erinnerung: Baumsuche

Erinnerung:

Baumsuche

mögliche Pfade, die exploriert werden können,
sind in einem Baum (Suchbaum) organisiert

Suchknoten entsprechen 1:1 den Pfaden vom Anfangszustand

Duplikate (auch: Transpositionen) sind möglich,
d. h. mehrere Knoten mit demselben Zustand

Suchbaum kann unbegrenzt in die Tiefe wachsen

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Graphensuche

Graphensuche

Unterschiede zur Baumsuche:

erkenne Duplikate: wenn ein Zustand auf mehreren Pfaden
erreichbar ist, erzeuge nur einen Suchknoten

Suchknoten entsprechen 1:1 den erreichbaren Zuständen

Suchbaum beschränkt, da es nur endlich viele Zustände gibt

Anmerkungen:

einige Graphensuchalgorithmen (später)
eliminieren nicht alle Duplikate sofort

ein möglicher Grund: optimale Lösungen finden,
wenn ein später gefundener Pfad zum Zustand s
billiger ist als ein früher gefundener

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Generischer Graphensuchalgorithmus

Generische Graphensuche

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n = open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Generischer Graphensuchalgorithmus: Diskussion

Diskussion:

Kommentare zur Baumsuche gelten analog

im
”
reinen“ Algorithmus muss die Closed-Liste

nicht notwendigerweise die Suchknoten speichern

es reicht, closed als Menge von Zuständen zu implementieren
fortgeschrittene Algorithmen benötigen die Knoten,
daher ist hier gleich der allgemeine Fall dargestellt

einige Varianten führen Ziel- und Duplikatstests
an anderen Stellen (früher) aus

 Vorteile? Nachteile?

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Bewertung von Suchalgorithmen

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Kriterien: Vollständigkeit

Vier Kriterien für Bewertung von Suchalgorithmen:

Vollständigkeit

Findet der Algorithmus garantiert eine Lösung, wenn eine existiert?
Terminiert er, wenn keine Lösung existiert?

erste Eigenschaft: semi-vollständig
beide Eigenschaften: vollständig

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Kriterien: Optimalität

Vier Kriterien für Bewertung von Suchalgorithmen:

Optimalität

Sind die vom Algorithmus berechneten Lösungen immer optimal?

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Kriterien: Zeitaufwand

Vier Kriterien für Bewertung von Suchalgorithmen:

Zeitaufwand

Wieviel Zeit benötigt der Algorithmus, um eine Lösung zu finden?

üblicherweise Worst-Case-Betrachtung

üblicherweise gemessen in erzeugten Knoten

oft als Funktion der folgenden Grössen:

b: Verzweigungsgrad (branching factor) des Zustandsraums
(max. Anzahl Nachfolger eines Zustands)

d : Suchtiefe (Länge des längsten Pfads
im erzeugten Suchbaum)

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Kriterien: Speicheraufwand

Vier Kriterien für Bewertung von Suchalgorithmen:

Speicheraufwand

Wieviel Speicher benötigt der Algorithmus,
um eine Lösung zu finden?

üblicherweise Worst-Case-Betrachtung

üblicherweise gemessen in gespeicherten Knoten

oft als Funktion der folgenden Grössen:

b: Verzweigungsgrad (branching factor) des Zustandsraums
(max. Anzahl Nachfolger eines Zustands)

d : Suchtiefe (Länge des längsten Pfads
im erzeugten Suchbaum)

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Analyse der generischen Suchalgorithmen

Generischer Baumsuchalgorithmus

Ist er vollständig? Ist er semi-vollständig?

Ist er optimal?

Was ist der Zeitaufwand im worst case?

Was ist der Speicheraufwand im worst case?

Generischer Graphensuchalgorithmus

Ist er vollständig? Ist er semi-vollständig?

Ist er optimal?

Was ist der Zeitaufwand im worst case?

Was ist der Speicheraufwand im worst case?

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Zusammenfassung

Einführung Baumsuche Graphensuche Bewertung von Suchalgorithmen Zusammenfassung

Zusammenfassung

Baumsuche:
Suchknoten entsprechen 1:1 Pfaden vom Anfangszustand

Graphensuche:
Suchknoten entsprechen 1:1 erreichbaren Zuständen
(Duplikateliminierung)

generische Verfahren mit vielen möglichen Varianten

Bewertung von Algorithmen:

Vollständigkeit und Semi-Vollständigkeit
Optimalität
Zeit- und Speicheraufwand

	Einführung
	Baumsuche
	Graphensuche
	Bewertung von Suchalgorithmen
	Zusammenfassung

