Grundlagen der Kiinstlichen Intelligenz

6. Klassische Suche: Datenstrukturen fiir Suchalgorithmen

Malte Helmert

Universitat Basel

7. Marz 2014



Klassische Suche: Uberblick

Kapiteliiberblick klassische Suche:

@ 3.-5. Einfiihrung
o 6.—9. Basisalgorithmen

e 6. Datenstrukturen fiir Suchalgorithmen
e 7. Baumsuche und Graphensuche

e 8. Breitensuche und uniforme Kostensuche
e 9. Tiefensuche und iterative Tiefensuche

o folgende Kapitel: heuristische Algorithmen



Einfiihrung



Einfiihrung
©0®000

Suchalgorithmen

@ Wir befassen und jetzt mit Suchalgorithmen.

@ Wie iiberall in der Informatik sind geeignete Datenstrukturen
ein Schliissel zu guter Performance.

~» haufige Operationen miissen schnell sein

@ gut implementierte Suchalgorithmen verarbeiten
bis zu ~30,000,000 Zustinde/Sekunde auf einem CPU-Kern

~~ Zusatzmaterial (Paper von Burns et al.)

dieses Kapitel: einige grundlegende Datenstrukturen fiir Suche



Einfiihrung
0000

Vorschau: Suchalgorithmen

@ Ab dem nichsten Kapitel betrachten wir
Suchalgorithmen genauer.

@ hier eine kurze Vorschau, um unsere Diskussion
von Datenstrukturen zu motivieren



Einfiihrung
000e0

Beispiel: Suchalgorithmus

@ Ausgehend vom Anfangszustand,
@ expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.
@ Hore auf, wenn ein Zielzustand expandiert wird
@ oder alle erreichbaren Zustdnde betrachtet wurden.



Einfiihrung
000e0

Beispiel: Suchalgorithmus

@ Ausgehend vom Anfangszustand,
@ expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.
@ Hore auf, wenn ein Zielzustand expandiert wird
@ oder alle erreichbaren Zustdnde betrachtet wurden.



Einfiihrung
000e0

Beispiel: Suchalgorithmus

@ Ausgehend vom Anfangszustand,
@ expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.
@ Hore auf, wenn ein Zielzustand expandiert wird
@ oder alle erreichbaren Zustdnde betrachtet wurden.



Einfiihrung
000e0

Beispiel: Suchalgorithmus

@ Ausgehend vom Anfangszustand,
@ expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.
@ Hore auf, wenn ein Zielzustand expandiert wird
@ oder alle erreichbaren Zustdnde betrachtet wurden.



Einfiihrung
000e0

Beispiel: Suchalgorithmus

@ Ausgehend vom Anfangszustand,
@ expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.
@ Hore auf, wenn ein Zielzustand expandiert wird
@ oder alle erreichbaren Zustdnde betrachtet wurden.



Einfiihrung
000e0

Beispiel: Suchalgorithmus

@ Ausgehend vom Anfangszustand,
@ expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.
@ Hore auf, wenn ein Zielzustand expandiert wird
@ oder alle erreichbaren Zustdnde betrachtet wurden.



Einfiihrung
000e0

Beispiel: Suchalgorithmus

@ Ausgehend vom Anfangszustand,
@ expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.
@ Hore auf, wenn ein Zielzustand expandiert wird
@ oder alle erreichbaren Zustdnde betrachtet wurden.

(Expansionsreihenfolge hangt vom gewahlten Suchalgorithmus ab.)

... und so weiter.



Einfiihrung
ooooe

Grundlegende Datenstrukturen fiir Suche

Wir betrachten drei abstrakte Datenstrukturen fiir Suche:
@ Suchknoten: speichern welche Zustiande erreicht
werden konnen, wie, und unter welchen Kosten
~> Knoten des Beispielsuchbaums
@ Open-Liste: organisiert die Blatter des Suchbaums effizient
~» Menge der Blatter des Beispielsuchbaums
@ Closed-Liste: merkt expandierte Zustande,
um mehrfache Expansion desselben Zustands zu vermeiden
~> innere Knoten eines Suchbaums

Nicht alle Algorithmen verwenden alle drei Datenstrukturen,
und manchmal sind sie implizit (z. B. im CPU-Stack).



Suchknoten



Suchknoten
0®0000000

Suchknoten

Suchknoten (kurz: Knoten) speichern welche Zustande erreicht
werden konnen, wie, und unter welchen Kosten

Gemeinsam bilden sie den so genannten Suchbaum.




Suchknoten
00®000000

Attribute von Suchknoten

Attribute eines Suchknoten n

n.state Zustand, der zu diesem Knoten gehort

n.parent Suchknoten, der diesen Knoten erzeugte
(none fiir den Wurzelknoten)

n.action Aktion, die von n.parent zu n fiihrt
(none fiir den Wurzelknoten)

n.path_cost Kosten des Pfades vom Anfangszustand zu n.state,
der aus Verfolgen der parent-Referenzen resultiert
(traditionell mit g(n) bezeichnet)

...und manchmal zusatzliche Felder (z. B., Tiefe im Baum)



Suchknoten
000®00000

Suchknoten: Java

Suchknoten in Java-Syntax

public interface State {
}

public interface Action {

}

public class SearchNode {
State state;
SearchNode parent;
Action action;
int pathCost;




Suchknoten
0000®0000

Knoten in einem Suchbaum

PARENT-NODE

ACTION =right
DEPTH =6
PATH-COST =6

=]
o - L=
B2




Suchknoten
00000e000

Implementierung von Suchknoten

@ verniinftige Implementierung von Suchknoten ist einfach
o fortgeschrittene Aspekte:

o Bendtigen wir iiberhaupt explizite Knoten?

e Konnen wir Lazy Evaluation verwenden?

e Lohnt sich manuelle Speicherverwaltung?

e Konnen wir Information komprimieren?



Suchknoten
000000e®00

Operationen fiir Suchknoten: make_root_node

Erzeuge Wurzelknoten eines Suchbaums:

function make_root_node()

node := new SearchNode
node.state := init()
node.parent := none
node.action := none
node.path_cost := 0
return node




Suchknoten
0000000e0

Operationen fiir Suchknoten: make_node

Erzeuge Kindknoten in einem Suchbaum:

function make_node(parent, action, state)

node := new SearchNode

node.state := state

node.parent := parent

node.action := action

node.path_cost := parent.path_cost + cost(action)
return node




Suchknoten

0O0000000e

Operationen fiir Suchknoten: extract_path

Extrahiere den Pfad zu einem Suchknoten:

function extract_path(node)

path := ()

while node.parent # none:
path.append(node.action)
node := node.parent

path.reverse()

return path




Open-Liste



Open-Liste
o®00

Open-Listen

Open-Liste

Die Open-Liste (auch: Frontier) organisiert die Blatter
des Suchbaums.
Sie muss zwei Operationen effizient unterstiitzen:
@ bestimme und entferne den nichsten zu expandieren Knoten

o fiige ein neuen Knoten ein, der Kandidat fiir Expansion ist

v

Anmerkung: trotz des Namens ist es meist eine sehr schlechte Idee,
die Open-Liste als einfache Liste zu implementieren.



Open-Liste
coeo

Open-Listen: Eintrage modifizieren

@ Manche Implementierungen unterstiitzen zusatzlich
die Modifikation eines Eintrags in der Open-Liste,
wenn ein billigerer Pfad zum zugehorigen Zustand
gefunden wird.

@ Dies macht die Implementierung komplizierter.

~> wir betrachten solche Modifikationen nicht und verwenden
stattdessen verzogerte Duplikateliminierung (~ spater)



Open-Liste
ocooe

Interface von Open-Listen

Methoden einer Open-Liste open

open.is_empty() testet, ob die Open-Liste leer ist

open.pop() entfernt den nichsten zu expandieren Knoten
und liefert ihn zuriick

open.insert(n) fiigt Knoten node n in die Open-Liste ein

@ Unterschiedliche Suchalgorithmen verwenden
unterschiedliche Strategien fiir die Entscheidung,
welcher Knoten in open.pop zuriickgeliefert wird.

@ Die Wahl der passenden Datenstruktur hangt
von dieser Strategie ab (z. B.: Stack, Deque, Min-Heap).



Closed-Liste



Closed-Liste
oeo

Closed-Listen

Closed-Liste

Die Closed-Liste merkt sich die expandierten Zustande,

um mehrfache Expansion desselben Zustands zu vermeiden
Sie muss zwei Operationen effizient unterstiitzen:

o fiige einen Knoten ein, dessen Zustand
noch nicht in der Closed-Liste ist

@ teste, ob ein Knoten mit einem gegebenen Zustand
in der Closed-Liste ist; falls ja, liefere ihn zuriick

4

Anmerkung: trotz des Namens ist es meist eine sehr schlechte Idee,
die Closed-Liste als einfache Liste zu implementieren. (\Warum?)



Closed-Liste
ooe

Interface und Implementierung von Closed-Listen

Methoden einer Closed-Liste closed

closed.insert(n) fiige Knoten n in closed ein;
falls ein Knoten mit demselben Zustand
bereits in closed existiert, ersetze ihn

closed.lookup(s) teste, ob ein Knoten mit Zustand s
in der Closed-Liste vorhanden ist;
falls ja, liefere ihn zuriick;
sonst, liefere none zuriick

@ Hash-Tabellen mit Zustdnden als Schliissel kdnnen
als effiziente Implementierung einer Closed-Liste dienen.



Zusammenfassung



Zusammenfassung
oe

Zusammenfassung

@ Suchknoten:
reprasentieren wahrend der Suche erreichte Knoten
und zugehorige Informationen
@ Knotenexpansion:
Erzeugen der Nachfolgeknoten eines Knoten durch Anwenden
der Aktionen, die im Zustand des Knoten anwendbar sind
@ Open-Liste oder Frontier:
Menge der Knoten, die derzeit Kandidaten fiir Expansion sind
@ Closed-Liste:
Menge der bereits expandierten Knoten (und deren Zustande)



	Einführung
	Suchknoten
	Open-Liste
	Closed-Liste
	Zusammenfassung

