
Grundlagen der Künstlichen Intelligenz
6. Klassische Suche: Datenstrukturen für Suchalgorithmen

Malte Helmert

Universität Basel

7. März 2014

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Klassische Suche: Überblick

Kapitelüberblick klassische Suche:

3.–5. Einführung

6.–9. Basisalgorithmen

6. Datenstrukturen für Suchalgorithmen
7. Baumsuche und Graphensuche
8. Breitensuche und uniforme Kostensuche
9. Tiefensuche und iterative Tiefensuche

folgende Kapitel: heuristische Algorithmen

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Einführung

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Suchalgorithmen

Wir befassen und jetzt mit Suchalgorithmen.

Wie überall in der Informatik sind geeignete Datenstrukturen
ein Schlüssel zu guter Performance.

 häufige Operationen müssen schnell sein

gut implementierte Suchalgorithmen verarbeiten
bis zu ∼30,000,000 Zustände/Sekunde auf einem CPU-Kern

 Zusatzmaterial (Paper von Burns et al.)

dieses Kapitel: einige grundlegende Datenstrukturen für Suche

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Vorschau: Suchalgorithmen

Ab dem nächsten Kapitel betrachten wir
Suchalgorithmen genauer.

hier eine kurze Vorschau, um unsere Diskussion
von Datenstrukturen zu motivieren

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Beispiel: Suchalgorithmus

Ausgehend vom Anfangszustand,

expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.

Höre auf, wenn ein Zielzustand expandiert wird

oder alle erreichbaren Zustände betrachtet wurden.

〈3, 3, 1〉

. . . und so weiter.

(Expansionsreihenfolge hängt vom gewählten Suchalgorithmus ab.)

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Beispiel: Suchalgorithmus

Ausgehend vom Anfangszustand,

expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.

Höre auf, wenn ein Zielzustand expandiert wird

oder alle erreichbaren Zustände betrachtet wurden.

〈3, 3, 1〉

. . . und so weiter.

(Expansionsreihenfolge hängt vom gewählten Suchalgorithmus ab.)

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Beispiel: Suchalgorithmus

Ausgehend vom Anfangszustand,

expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.

Höre auf, wenn ein Zielzustand expandiert wird

oder alle erreichbaren Zustände betrachtet wurden.

〈3, 3, 1〉

〈2, 2, 0〉 〈3, 2, 0〉 〈3, 1, 0〉

. . . und so weiter.

(Expansionsreihenfolge hängt vom gewählten Suchalgorithmus ab.)

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Beispiel: Suchalgorithmus

Ausgehend vom Anfangszustand,

expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.

Höre auf, wenn ein Zielzustand expandiert wird

oder alle erreichbaren Zustände betrachtet wurden.

〈3, 3, 1〉

〈2, 2, 0〉 〈3, 2, 0〉

〈3, 3, 1〉

〈3, 1, 0〉

. . . und so weiter.

(Expansionsreihenfolge hängt vom gewählten Suchalgorithmus ab.)

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Beispiel: Suchalgorithmus

Ausgehend vom Anfangszustand,

expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.

Höre auf, wenn ein Zielzustand expandiert wird

oder alle erreichbaren Zustände betrachtet wurden.

〈3, 3, 1〉

〈2, 2, 0〉

〈3, 2, 1〉 〈3, 3, 1〉

〈3, 2, 0〉

〈3, 3, 1〉

〈3, 1, 0〉

. . . und so weiter.

(Expansionsreihenfolge hängt vom gewählten Suchalgorithmus ab.)

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Beispiel: Suchalgorithmus

Ausgehend vom Anfangszustand,

expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.

Höre auf, wenn ein Zielzustand expandiert wird

oder alle erreichbaren Zustände betrachtet wurden.

〈3, 3, 1〉

〈2, 2, 0〉

〈3, 2, 1〉 〈3, 3, 1〉

〈3, 2, 0〉

〈3, 3, 1〉

〈2, 2, 0〉 〈3, 2, 0〉 〈3, 1, 0〉

〈3, 1, 0〉

. . . und so weiter.

(Expansionsreihenfolge hängt vom gewählten Suchalgorithmus ab.)

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Beispiel: Suchalgorithmus

Ausgehend vom Anfangszustand,

expandiere wiederholt einen Zustand
durch Erzeugen seiner Nachfolger.

Höre auf, wenn ein Zielzustand expandiert wird

oder alle erreichbaren Zustände betrachtet wurden.

〈3, 3, 1〉

〈2, 2, 0〉

〈3, 2, 1〉 〈3, 3, 1〉

〈3, 2, 0〉

〈3, 3, 1〉

〈2, 2, 0〉 〈3, 2, 0〉 〈3, 1, 0〉

〈3, 1, 0〉

. . . und so weiter.

(Expansionsreihenfolge hängt vom gewählten Suchalgorithmus ab.)

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Grundlegende Datenstrukturen für Suche

Wir betrachten drei abstrakte Datenstrukturen für Suche:

Suchknoten: speichern welche Zustände erreicht
werden können, wie, und unter welchen Kosten

 Knoten des Beispielsuchbaums

Open-Liste: organisiert die Blätter des Suchbaums effizient

 Menge der Blätter des Beispielsuchbaums

Closed-Liste: merkt expandierte Zustände,
um mehrfache Expansion desselben Zustands zu vermeiden

 innere Knoten eines Suchbaums

Nicht alle Algorithmen verwenden alle drei Datenstrukturen,
und manchmal sind sie implizit (z. B. im CPU-Stack).

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Suchknoten

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Suchknoten

Suchknoten

Suchknoten (kurz: Knoten) speichern welche Zustände erreicht
werden können, wie, und unter welchen Kosten

Gemeinsam bilden sie den so genannten Suchbaum.

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Attribute von Suchknoten

Attribute eines Suchknoten n

n.state Zustand, der zu diesem Knoten gehört

n.parent Suchknoten, der diesen Knoten erzeugte
(none für den Wurzelknoten)

n.action Aktion, die von n.parent zu n führt
(none für den Wurzelknoten)

n.path cost Kosten des Pfades vom Anfangszustand zu n.state,
der aus Verfolgen der parent-Referenzen resultiert
(traditionell mit g(n) bezeichnet)

. . . und manchmal zusätzliche Felder (z. B., Tiefe im Baum)

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Suchknoten: Java

Suchknoten in Java-Syntax

public interface State {

}

public interface Action {

}

public class SearchNode {

State state;

SearchNode parent;

Action action;

int pathCost;

}

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Knoten in einem Suchbaum

1

23

45

6

7

81

23

45

6

7

8

Node
DEPTH = 6

STATE

PARENT-NODE

ACTION = right

PATH-COST = 6

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Implementierung von Suchknoten

vernünftige Implementierung von Suchknoten ist einfach

fortgeschrittene Aspekte:

Benötigen wir überhaupt explizite Knoten?
Können wir Lazy Evaluation verwenden?
Lohnt sich manuelle Speicherverwaltung?
Können wir Information komprimieren?

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Operationen für Suchknoten: make root node

Erzeuge Wurzelknoten eines Suchbaums:

function make root node()

node := new SearchNode
node.state := init()
node.parent := none
node.action := none
node.path cost := 0
return node

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Operationen für Suchknoten: make node

Erzeuge Kindknoten in einem Suchbaum:

function make node(parent, action, state)

node := new SearchNode
node.state := state
node.parent := parent
node.action := action
node.path cost := parent.path cost + cost(action)
return node

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Operationen für Suchknoten: extract path

Extrahiere den Pfad zu einem Suchknoten:

function extract path(node)

path := 〈〉
while node.parent 6= none:

path.append(node.action)
node := node.parent

path.reverse()
return path

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Open-Liste

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Open-Listen

Open-Liste

Die Open-Liste (auch: Frontier) organisiert die Blätter
des Suchbaums.

Sie muss zwei Operationen effizient unterstützen:

bestimme und entferne den nächsten zu expandieren Knoten

füge ein neuen Knoten ein, der Kandidat für Expansion ist

Anmerkung: trotz des Namens ist es meist eine sehr schlechte Idee,
die Open-Liste als einfache Liste zu implementieren.

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Open-Listen: Einträge modifizieren

Manche Implementierungen unterstützen zusätzlich
die Modifikation eines Eintrags in der Open-Liste,
wenn ein billigerer Pfad zum zugehörigen Zustand
gefunden wird.

Dies macht die Implementierung komplizierter.

 wir betrachten solche Modifikationen nicht und verwenden
stattdessen verzögerte Duplikateliminierung (später)

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Interface von Open-Listen

Methoden einer Open-Liste open

open.is empty() testet, ob die Open-Liste leer ist

open.pop() entfernt den nächsten zu expandieren Knoten
und liefert ihn zurück

open.insert(n) fügt Knoten node n in die Open-Liste ein

Unterschiedliche Suchalgorithmen verwenden
unterschiedliche Strategien für die Entscheidung,
welcher Knoten in open.pop zurückgeliefert wird.

Die Wahl der passenden Datenstruktur hängt
von dieser Strategie ab (z. B.: Stack, Deque, Min-Heap).

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Closed-Liste

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Closed-Listen

Closed-Liste

Die Closed-Liste merkt sich die expandierten Zustände,
um mehrfache Expansion desselben Zustands zu vermeiden

Sie muss zwei Operationen effizient unterstützen:

füge einen Knoten ein, dessen Zustand
noch nicht in der Closed-Liste ist

teste, ob ein Knoten mit einem gegebenen Zustand
in der Closed-Liste ist; falls ja, liefere ihn zurück

Anmerkung: trotz des Namens ist es meist eine sehr schlechte Idee,
die Closed-Liste als einfache Liste zu implementieren. (Warum?)

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Interface und Implementierung von Closed-Listen

Methoden einer Closed-Liste closed

closed.insert(n) füge Knoten n in closed ein;
falls ein Knoten mit demselben Zustand
bereits in closed existiert, ersetze ihn

closed.lookup(s) teste, ob ein Knoten mit Zustand s
in der Closed-Liste vorhanden ist;
falls ja, liefere ihn zurück;
sonst, liefere none zurück

Hash-Tabellen mit Zuständen als Schlüssel können
als effiziente Implementierung einer Closed-Liste dienen.

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Zusammenfassung

Einführung Suchknoten Open-Liste Closed-Liste Zusammenfassung

Zusammenfassung

Suchknoten:
repräsentieren während der Suche erreichte Knoten
und zugehörige Informationen

Knotenexpansion:
Erzeugen der Nachfolgeknoten eines Knoten durch Anwenden
der Aktionen, die im Zustand des Knoten anwendbar sind

Open-Liste oder Frontier:
Menge der Knoten, die derzeit Kandidaten für Expansion sind

Closed-Liste:
Menge der bereits expandierten Knoten (und deren Zustände)

	Einführung
	Suchknoten
	Open-Liste
	Closed-Liste
	Zusammenfassung

