
Grundlagen der Künstlichen Intelligenz (CS 205)

Prof. Dr. M. Helmert
Dr. M. Wehrle
Frühjahrssemester 2014

Universität Basel
Fachbereich Informatik

Übungsblatt 3
Abgabe: 28. März 2014

Aufgabe 3.1 (2+1+1 Punkte)

Betrachten Sie das 8-Puzzle (analog zum 15-Puzzle aus der Vorlesung) im folgenden Anfangszu-
stand init.

1 2 3
4 5
7 8 6

Der einzige Zielzustand sei folgendermassen gegeben.

1 2 3
4 5 6
7 8

Wie beim 15-Puzzle seien die möglichen Aktionen folgendermassen modelliert: Das leere Feld kann
nach oben (up), links (left), rechts (right) und unten (down) verschoben werden, wenn es sich nicht
bereits am entsprechenden Rand befindet.

(a) Wenden Sie tiefenbeschränkte Suche mit einer maximalen Tiefe von 3 auf den Anfangszu-
stand an (d.h., simulieren Sie den Aufruf depth limited search(init(), 3)). Geben Sie
hierzu den Suchbaum und die Expansionsreihenfolge der Knoten an. Die Reihenfolge, in der
Nachfolgezustände berechnet werden, sei durch up < left < right < down gegeben (d.h., für
einen gegebenen Zustand wird stets zuerst dessen Nachfolger bzgl. up und als letztes dessen
Nachfolger bzgl. down von succ berechnet).

(b) Was passiert, wenn keine Tiefenbeschränkung gegeben ist? Begründen Sie Ihre Antwort.

(c) Nehmen Sie an, die Reihenfolge der Aktionen sei nun im Vergleich zu a) invertiert, d.h.
down < right < left < up. Simulieren Sie für diese Reihenfolge noch einmal den Aufruf
depth limited search(init(), 3). Diskutieren Sie das Ergebnis im Vergleich zu a).

Aufgabe 3.2 (6+2 Punkte)

Bei dieser Aufgabe handelt es sich um eine Programmieraufgabe. Wir erwarten, dass Sie Ihre Im-
plementierung selbständig, das heisst ohne Anwendung von fremdem Code z.B. aus dem Internet
erstellen. Uns ist bewusst, dass Programmieraufgaben aufwendiger sind als die üblichen theo-
retischen Aufgaben und helfen bei technischen Schwierigkeiten und Verständnisproblemen gerne
weiter. Bitte wenden Sie sich dazu mit genügend zeitlichem Abstand zum Abgabetermin an Lukas
Beck oder Martin Wehrle.

(a) Implementieren Sie iterative Tiefensuche für den Puzzle- oder den Pancake-Zustandsraum.
Sie können hierzu Ihre Zustandsraum-Implementierung des letzten Übungszettels verwen-
den. Alternativ können Sie die Beispiellösung (in Java) für den Puzzle-Zustandsraum von
der Webseite verwenden. Leiten Sie für die Implementierung der iterativen Tiefensuche von
der abstrakten Klasse SearchAlgorithmBase ab, die Sie ebenfalls auf der Webseite finden,
und implementieren Sie die Methode run(). Lassen Sie sich die Anzahl der generierten
Suchknoten in jeder Suchebene sowie die Gesamtzahl der generierten Suchknoten ausgeben.



(b) Generieren Sie sich mindestens 3 Beispiel-Inputs für das (Puzzle- oder Pancake-) Problem,
und testen Sie Ihre Implementierung auf diesen Problemen. Versuchen Sie, Beispiel-Inputs
von unterschiedlicher Schwierigkeit für Ihre Implementierung zu finden. Verwenden Sie ein
Zeitlimit von 10 Minuten pro Suche (z.B. unter Linux können Sie solch ein Zeitlimit mit
ulimit -t 600 für die aktuelle Shell-Sitzung setzen). Geben Sie jeweils die Anzahl der
generierten Suchknoten für jede Suchebene sowie die Gesamtzahl der generierten Suchknoten
aus, wenn der Algorithmus innerhalb der Zeitgrenze terminiert.

Reichen Sie bitte den Code inklusive Hinweisen zu Kompilierung und Aufruf bei courses ein (sofern
nicht selbsterklärend).

Die Übungsblätter dürfen in Gruppen von zwei Studierenden bearbeitet werden. Bitte schreiben Sie

beide Namen auf Ihre Lösung.


