Grundlagen der Kiinstlichen Intelligenz (CS 205)

Prof. Dr. M. Helmert Universitat Basel
Dr. M. Wehrle Fachbereich Informatik
Frithjahrssemester 2014

Ubungsblatt 3
Abgabe: 28. Mirz 2014

Aufgabe 3.1 (2+1+1 Punkte)

Betrachten Sie das 8-Puzzle (analog zum 15-Puzzle aus der Vorlesung) im folgenden Anfangszu-
stand init.

1123
)
7186

Der einzige Zielzustand sei folgendermassen gegeben.

1123
4156
718

Wie beim 15-Puzzle seien die moglichen Aktionen folgendermassen modelliert: Das leere Feld kann
nach oben (up), links (left), rechts (right) und unten (down) verschoben werden, wenn es sich nicht
bereits am entsprechenden Rand befindet.

(a) Wenden Sie tiefenbeschrinkte Suche mit einer maximalen Tiefe von 3 auf den Anfangszu-
stand an (d.h., simulieren Sie den Aufruf depth_limited_search(init(), 3)). Geben Sie
hierzu den Suchbaum und die Expansionsreihenfolge der Knoten an. Die Reihenfolge, in der
Nachfolgezustéinde berechnet werden, sei durch up < left < right < down gegeben (d.h., fiir
einen gegebenen Zustand wird stets zuerst dessen Nachfolger bzgl. up und als letztes dessen
Nachfolger bzgl. down von succ berechnet,).

(b) Was passiert, wenn keine Tiefenbeschrinkung gegeben ist? Begriinden Sie Thre Antwort.

(c) Nehmen Sie an, die Reihenfolge der Aktionen sei nun im Vergleich zu a) invertiert, d.h.
down < right < left < wup. Simulieren Sie fiir diese Reihenfolge noch einmal den Aufruf
depth_limited search(init(), 3). Diskutieren Sie das Ergebnis im Vergleich zu a).

Aufgabe 3.2 (642 Punkte)

Bei dieser Aufgabe handelt es sich um eine Programmieraufgabe. Wir erwarten, dass Sie Thre Im-
plementierung selbsténdig, das heisst ohne Anwendung von fremdem Code z.B. aus dem Internet
erstellen. Uns ist bewusst, dass Programmieraufgaben aufwendiger sind als die {iblichen theo-
retischen Aufgaben und helfen bei technischen Schwierigkeiten und Verstéindnisproblemen gerne
weiter. Bitte wenden Sie sich dazu mit geniigend zeitlichem Abstand zum Abgabetermin an Lukas
Beck oder Martin Wehrle.

(a) Implementieren Sie iterative Tiefensuche fiir den Puzzle- oder den Pancake-Zustandsraum.
Sie koénnen hierzu Thre Zustandsraum-Implementierung des letzten Ubungszettels verwen-
den. Alternativ kénnen Sie die Beispiellssung (in Java) fiir den Puzzle-Zustandsraum von
der Webseite verwenden. Leiten Sie fiir die Implementierung der iterativen Tiefensuche von
der abstrakten Klasse SearchAlgorithmBase ab, die Sie ebenfalls auf der Webseite finden,
und implementieren Sie die Methode run(). Lassen Sie sich die Anzahl der generierten
Suchknoten in jeder Suchebene sowie die Gesamtzahl der generierten Suchknoten ausgeben.



(b) Generieren Sie sich mindestens 3 Beispiel-Inputs fiir das (Puzzle- oder Pancake-) Problem,
und testen Sie Ihre Implementierung auf diesen Problemen. Versuchen Sie, Beispiel-Inputs
von unterschiedlicher Schwierigkeit fiir Ihre Implementierung zu finden. Verwenden Sie ein
Zeitlimit von 10 Minuten pro Suche (z.B. unter Linux kénnen Sie solch ein Zeitlimit mit
ulimit -t 600 fiir die aktuelle Shell-Sitzung setzen). Geben Sie jeweils die Anzahl der
generierten Suchknoten fiir jede Suchebene sowie die Gesamtzahl der generierten Suchknoten
aus, wenn der Algorithmus innerhalb der Zeitgrenze terminiert.

Reichen Sie bitte den Code inklusive Hinweisen zu Kompilierung und Aufruf bei courses ein (sofern
nicht selbsterklidrend).

Die Ubungsblitter diirfen in Gruppen von zwei Studierenden bearbeitet werden. Bitte schreiben Sie
beide Namen auf Ihre Lisung.



