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Markov-Entscheidungsprobleme Endlicher Horizont Unendlicher Horizont

Einordnung

Einordnung:

Handeln unter Unsicherheit

Umgebung:

statisch vs. dynamisch

deterministisch vs. nicht-deterministisch vs. stochastisch

vollständig vs. partiell vs. nicht beobachtbar

diskret vs. stetig

ein Agent vs. mehrere Agenten (Gegenspieler)

Lösungsansatz:

problemspezifisch vs. allgemein vs. lernend
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Erinnerung: Klassische Suchprobleme

Erinnerung: Annahmen bei klassischen Suchproblemen

einzelner Agent in Umgebung (ein Agent)

kennt immer genauen Weltzustand (vollständig beobachtbar)

Zustand ändert sich nur durch den Agenten (statisch)

endlich viele mögliche Zustände/Aktionen (insbes. diskret)

Aktionen haben deterministischen Einfluss auf Zustand

In vielen praktische Situationen ist Determinismus nicht gegeben!

 jetzt: Handeln in stochastischen Umgebungen
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Erinnerung: Zustandsraum

Zur Erinnerung unsere Definition im klassischen Fall:

Definition (Zustandsraum)

Ein Zustandsraum ist ein 6-Tupel S = 〈S ,A, cost,T , s0, S?〉 mit

S endliche Menge von Zuständen

A endliche Menge von Aktionen

cost : A→ R+
0 Aktionskosten

T ⊆ S × A× S Transitionsrelation oder Übergangsrelation;
deterministisch in 〈s, a〉
s0 ∈ S Anfangszustand

S? ⊆ S Menge der Zielzustände

Was ändert sich?

Deterministische Transitionen  Wahrscheinlichkeiten
Aktionskosten und Zielzustände  zustandsabhängige
Belohnungen (rewards)
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Markov-Entscheidungsproblem

Definition (Markov-Entscheidungsproblem)

Ein Markov-Entscheidungsproblem (Markov decision process,
MDP) ist ein 5-Tupel M = 〈S ,A,T ,R, s0〉 mit

S endliche Menge von Zuständen

A endliche Menge von Aktionen

T : S × A× S → [0, 1] Transitionswahrscheinlichkeiten;
erfüllen

∑
s′∈S T (s, a, s ′) = 1 für alle s ∈ S , a ∈ A

R : S → R Belohnungsfunktion (rewards)

s0 ∈ S Anfangszustand

Name kommt von so genannter Markov-Eigenschaft:
nächster Zustand hängt nur von aktuellem Zustand,
gewählter Aktion und Zufall ab, nicht von der

”
Vorgeschichte“
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Unterschiede zum klassischen Fall

1 Transitionswahrscheinlichkeiten:

wird in Zustand s die Aktion a ausgeführt,
hängt Nachfolgezustand vom Zufall ab:
Nachfolgezustand ist s ′ mit Wahrscheinlichkeit T (s, a, s ′)

2 Anwendbare Aktionen:

Bei MDPs sind üblicherweise (und in unserer Definition)
immer alle Aktionen anwendbar.

”
Eigentlich“ nicht anwendbare Aktionen oft modelliert

als Aktionen, die immer von s zu s zurückführen
oder in einen speziellen

”
Fehlerzustand“ führen.

3 Belohnungen:

Statt Zielzuständen ist für jeden Zustand
eine Belohnung für das Erreichen definiert.
 Zielzustände über Belohnungen modellierbar
Belohnungen können negativ sein, was Kosten entspricht.
 Aktionskosten über Belohnungen modellierbar
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MDPs: Ziel des Agenten

Ziel des handelnden Agenten bei MDPs ist,
so viele Belohnungen wie möglich aufzusammeln.

Zwei Problemvarianten:

endlicher Horizont H:
Agent führt H Aktionen aus, dann

”
endet“ das Problem

unendlicher Horizont:
Agent interagiert unbegrenzt lang mit der Umgebung

 wir behandeln beides; unendlicher Horizont ist verbreiteter
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Policys

Aktionsfolgen sind hier kein gutes Lösungskonzept:
beste Aktion im 2. Schritt kann vom zufälligen Ausgang
nach Ausführung der Aktion im 1. Schritt abhängen

beste Aktion hängt von aktuellem Zustand ab
(den der Agent immer beobachten kann) sowie
(bei endlichem Horizont) von verbleibender Zeit

 berechne Policy (= Strategie) für jeden möglichen Zustand

stationäre Policy: π : S → A
π(s) Aktion in Zustand s

nichtstationäre Policy: π : S × {1, . . . ,H} → A
π(s, t) Aktion in Zustand s, wenn noch t Zeitschritte übrig
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Explizite Zustandsräume

In diesem Kapitel betrachten wir Algorithmen, die gesamte
Policys (vor-) berechnen, also das Problem komplett lösen.

Aufwand dafür ist hoch und nur für Probleme geeignet,
bei denen alle Zustände in den Speicher passen
(explizite Darstellung der Zustandsräume)

Verallgemeinerungen auf deklarative Zustandsräume
kombinieren MDP-Techniken mit Handlungsplanungstechniken
(
”
probabilistische Planung“)
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Wert einer Policy

Wie gut ist eine Policy π?

Wie messen wir die von π aufgesammelten Belohnungen?

Wertfunktion Vπ : S 7→ R (für stationäre Policys) bzw.
V t
π : S 7→ R (t ∈ N0; für nichtstationäre Policys)

misst erwartete Belohnung bei Ausführung der Policy
von gegebenem Zustand s aus

hängt von unmittelbarer Belohnung in s ab, aber auch davon,
welche Belohnungen später gesammelt werden können

unsere Aufgabe: berechne optimale Policy
(maximiert Vπ(s) bzw. V t

π(s) in jedem Zustand)

Anmerkung: Anfangszustand spielt in diesem Kapitel keine Rolle,
ist aber bei fortgeschrittenen Techniken wichtig.
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Endlicher Horizont
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Optimales Verhalten bei endlichem Horizont

Sie befinden sich in Sydney und Ihr Rückflug nach Hause
startet morgen früh. Was ist die beste Aktion?

Sie befinden sich in Sydney und Ihr Rückflug nach Hause
startet in drei Monaten. Was ist die beste Aktion?

Optimales Verhalten bei endlichem Horizont
hängt von verbleibender Restzeit ab.

 eine nichtstationäre Policy wird benötigt
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Wertfunktion für endlichen Horizont

V k
π (s) ist Wert von Policy π und Restzeit k im Zustand s

erwarteter Gesamtnutzen bei Ausführung von π in s,
wenn noch k Schritte ausgeführt werden können

V k
π (s) = E

[
k∑

t=0

Rt

∣∣∣∣∣π, s
]

= E

[
k∑

t=0

R(st)

∣∣∣∣∣at = π(st , k − t), s0 = s

]

Rt und st sind Zufallsvariablen
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Algorithmische Probleme

Policy-Bewertung

Gegeben ein MDP, eine nichtstationäre Policy π und ein endlicher
Horizont H, berechne die Wertfunktionen Vπ.

Policy-Optimierung

Gegeben ein MDP und ein endlicher Horizont H,
berechne eine optimale Policy π∗ für den Horizont H.

Wie viele Policys mit endlichem Horizont gibt es
(abhängig von Zustandszahl |S | und Aktionszahl |A|)?

Antwort: |A||S |·H

 Ausprobieren aller Alternativen nicht möglich!

wir zeigen: Policy-Optimierung kann zurückgeführt werden
auf Berechnung der optimalen Wertfunktion
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Policy-Bewertung bei endlichem Horizont

Benutze dynamische Programmierung:
Wert mit t verbleibenden Zeitschritten einfach zu berechnen,
wenn Wert mit t − 1 verbleibenden Zeitschritten bekannt.

∀s ∈ S ∀t ≥ 1 :

V 0
π (s) = R(s)

V t
π(s) = R(s) +

∑
s′∈S

T (s, π(s, t), s ′) · V t−1
π (s ′)

π(s, t)

s

s1

s2

a 0.7

0.3

V t
π V t−1

π
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Policy-Optimierung: Bellman-Backups

Wie berechnen wir bestmöglichen Wert V t
∗ (s) gegeben V t−1

∗ (s)?
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Policy-Optimierung: Bellman-Backups

Wie berechnen wir bestmöglichen Wert V t
∗ (s) gegeben V t−1

∗ (s)?

s

s1

s2

0.7

0.3

a1

a2

s3

s4

0.4

0.6

V t
π

V t−1
π
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Policy-Optimierung: Bellman-Backups
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s

s1

s2

0.7

0.3

a1

a2

s3

s4

0.4

0.6

V t
π

V t−1
πCompute
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Policy-Optimierung: Bellman-Backups

Wie berechnen wir bestmöglichen Wert V t
∗ (s) gegeben V t−1

∗ (s)?

s

s1

s2

0.7

0.3

a1

a2

s3

s4

0.4

0.6

V t
π

V t−1
πCompute

expectations

Compute MAX
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Value Iteration für endlichen Horizont

Dynamische Programmierung kann für
Konstruktion der optimalen Policy verwendet werden:

Value Iteration

∀s ∈ S ∀t ≥ 1 :

V 0
∗ (s) = R(s)

V t
∗ (s) = R(s) + max

a∈A

∑
s′∈S

T (s, a, s ′) · V t−1
∗ (s ′)

π∗(s, t) = arg max
a∈A

∑
s′∈S

T (s, a, s ′) · V t−1
∗ (s ′)

V t
∗ (s) ist die optimale t-Schritt-Wertfunktion

π∗ ist optimale Policy (deren Wertfunktion Vπ∗ ist)
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Value Iteration: Zeitaufwand

Zeitaufwand von Value Iteration:

H Iterationen

pro Iteration: |S | Zustände (für s)

pro Zustand: |A| Aktionen (für a)

pro Zustand/Aktions-Paar: |S | Nachfolgezustände (für s ′)

 Laufzeit O(H · |S |2 · |A|)
 polynomiell in |S |, |A| und H

Frage:
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Value Iteration: Zeitaufwand
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Markov-Entscheidungsprobleme Endlicher Horizont Unendlicher Horizont

Zusammenfassung: endlicher Horizont

Value Iteration berechnet eine optimale Policy:

V t
π∗(s) ≥ V t

π(s), ∀π, s, t

Anmerkung: optimale Wertfunktion V∗ ist eindeutig;
die Policy π∗ selbst muss nicht eindeutig sein (Warum?)

Rechenaufwand ist polynomiell in der Grösse des Problems
(gemessen in Zuständen und Aktionen) und des Horizonts
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Unendlicher Horizont
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Probleme für Wertfunktionen bei unendlichem Horizont

Für viele MDPs wäre jede feste Zeitschranke willkürlich.

Beispiel:
”
Wirf eine Münze, bis Kopf fällt“.

Welcher endliche Horizont wäre angemessen?

Daher verwendet man meist einen unendlichen Horizont.

Problem: bei vielen MDPs ist
”
Summe über zukünftige

Belohnungen“ bei unendlichem Horizont nicht wohldefiniert.
(Belohnungen wären unendlich oder divergent.)

Trick: betrachte diskontierte MDPs, bei denen sofortige
Belohnungen wertvoller sind als zukünftige.

Diskontfaktor 0 < γ < 1 ∈ R
zukünftige Belohnungen in jedem Zeitschritt um Faktor γ
reduziert
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Wertfunktion für unendlichen Horizont

Diskontierte Wertfunktion mit Diskontfaktor γ:

Vπ(s) ist Wert von Policy π im Zustand s

erwarteter Gesamtnutzen bei Ausführung von π in s:

Vπ(s) = E

[ ∞∑
t=0

γtRt

∣∣∣∣∣π, s
]

= E

[ ∞∑
t=0

γtR(st)

∣∣∣∣∣at = π(st), s0 = s

]

Rt und st sind Zufallsvariablen

Warum Diskontierung?

Wertfunktion ist wohldefiniert: konvergiert immer

Belohnungen werden schnell angestrebt: praktisch oft sinnvoll

ökonomische Argumente
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Eigenschaften von diskontierten MDPs

Optimale Policy maximiert Wert jedes Zustands.

In diskontierten MDPs gibt es immer
eine optimale stationäre Policy (Howard, 1960)

Wir schreiben V∗ für die Wertfunktion
einer optimalen Policy π∗.
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Algorithmische Probleme

Policy-Bewertung

Gegeben MDP mit unendlichem Horizont, Diskontfaktor γ
und stationäre Policy π, berechne die Wertfunktion Vπ.

Policy-Optimierung

Gegeben MDP mit unendlichem Horizont und Diskontfaktor γ,
berechne eine optimale Policy π.

dieselben Probleme wie bei endlichem Horizont

Value Iteration über
”
alle“ Zeitschritte reicht nicht mehr aus,

da Ausführung der Policy kein Ende nimmt

Wie können wir dennoch Vπ berechnen?

Wie können wir einen optimale Policy finden?
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Value Iteration über
”
alle“ Zeitschritte reicht nicht mehr aus,

da Ausführung der Policy kein Ende nimmt

Wie können wir dennoch Vπ berechnen?

Wie können wir einen optimale Policy finden?
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Policy-Bewertung bei unendlichem Horizont

Erinnerung: Zusammenhang V t
π und V t−1

π bei endlichem Horizont:

V t
π(s) = R(s) +

∑
s′∈S

T (s, π(s, t), s ′) · V t−1
π (s ′)

Bei stationären Policys ist der Zeitschritt für π egal und
mit der Diskontierung ergibt sich eine Rekursionsgleichung:

Vπ(s) = R(s) + γ
∑
s′∈S

T (s, π(s), s ′) · Vπ(s ′)

Wie können wir Vπ berechnen?
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Berechnung der Wertfunktion

Wie können wir Vπ berechnen?

Vπ(s) = R(s) + γ
∑
s′∈S

T (s, π(s), s ′) · Vπ(s ′) für alle s ∈ S

Bei Policy-Bewertung sind R, γ, T und π bekannt.

unbekannt: die Werte Vπ(s) für alle s ∈ S

 lineares Gleichungssystem (LGS) mit |S | Gleichungen
und |S | Variablen

dieses LGS hat immer genau eine Lösung, wenn 0 < γ < 1 gilt
(dabei geht ein, dass T Wahrscheinlichkeiten kodiert)

 Lösung des LGS mit Methoden der linearen Algebra
(z. B. Gauss’sches Eliminationsverfahren)
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Policy-Optimierung bei unendlichem Horizont

wie im Fall endlichen Horizonts basiert Policy-Optimierung
auf Berechnung der optimalen Wertfunktion V∗
V∗ erfüllt Bellman-Gleichung

V∗(s) = R(s) + γ · max
a∈A

∑
s′∈S

T (s, a, s ′) · V∗(s ′) für alle s ∈ S

wieder Gleichungssystem mit |S | Gleichungen
und |S | Variablen

wegen max-Operator ist Gleichungssystem nichtlinear
und damit nicht ganz einfach zu lösen

optimale Lösung ist Fixpunkt des Bellman-Operators B,
d. h. B[V∗] = V∗, wobei

B[V ](s) := R(s) + γ ·max
a∈A

∑
s′∈S

T (s, a, s ′) · V (s ′)
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Value Iteration für unendlichen Horizont

analog zum endlichen Horizont kann optimale Policy
durch Bellman-Updates berechnet werden:
V0 = R; Vt+1 = B[Vt ]

ausführlicher also für alle s ∈ S :

V 0(s) = R(s)

V t(s) = R(s) + γmax
a∈A

∑
s′∈S

T (s, a, s ′) · V t−1(s ′)

konvergiert gegen die optimale Wertfunktion!

lim
t→∞

V t = V∗

Wie viele Iterationen brauchen wir in der Praxis?
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Konvergenz von Value Iteration

Bellman-Backup B ist ein Kontraktionsoperator
für Wertfunktionen, d. h. für alle V und V ′ gilt:

‖B[V ]− B[V ′]‖ ≤ γ · ‖V − V ′‖

Hierbei ist ‖V ‖ die Maximums-Norm; z. B. ‖V ‖ = 4.5
für V = {s1 7→ 0.1, s2 7→ −4.5, s3 7→ 3, s4 7→ 2}

 Bellman-Backups auf beliebigen Wertfunktion V und V ′

bringen diese näher zusammen
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Konvergenz von Value Iteration (Fortsetzung)

Insbesondere gilt für beliebige V :

‖V∗ − B[V ]‖ = ‖B[V∗]− B[V ]‖ ≤ γ · ‖V∗ − V ‖

Fehler von V gegenüber V∗ reduziert sich pro Schritt
mit Faktor γ

mit etwas Rechnung: wenn ‖V k − V k−1‖ ≤ δ,
dann ‖V∗ − V k‖ ≤ δγ

1−γ
 um V∗ mit einer gewünschten Genauigkeit ε zu approximieren:

Löse ε = δγ
1−γ nach δ auf.

Stoppe Value Iteration, sobald Abstand
zwischen V k und V k−1 höchstens δ
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 um V∗ mit einer gewünschten Genauigkeit ε zu approximieren:
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Was ist die berechnete Policy?

Angenommen, wir können V∗ gut durch V k approximieren.

Welche Policy sollen wir ausführen?

Antwort: gierige Policy bezüglich V k (Ein-Schritt-Lookahead):

greedy[V k ](s) = arg max
a∈A

∑
s′∈S

T (s, a, s ′) · V k(s ′)

Anmerkung: Wertfunktion von greedy[V k ]
ist nicht unbedingt gleich V k !

Wenn Fehler von V k gegenüber V∗ höchstens ε ist,
dann ist Fehler von Vgreedy[V k ] gegenüber V∗ höchstens 2εγ

1−γ
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Diskussion von Value Iteration

Value Iteration ist oft ein guter praktischer Algorithmus
zum Finden einer optimalen Policy.

Ein Nachteil ist, dass er nur approximativ ist,
da V∗ numerisch angenähert statt exakt berechnet wird.
(Allerdings können wir V∗ beliebig nahe annähern.)

Wir stellen noch einen zweiten Algorithmus vor,
der sich für exakte Optimierung eignet.

Bei diesem Algorithmus wird nicht über (numerische)
Wertfunktionen, sondern über (diskrete) Policys iteriert.
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Policy-Optimierung durch Policy Iteration

Gegeben feste Policy π können wir die Wertefunktion exakt
berechnen (Policy-Bewertung durch Lösung eines LGS).

Policy Iteration nutzt dies aus:
wechsle Policy-Bewertung mit Policy-Verbesserung ab,
bis die Wertfunktion sich nicht mehr ändert.

Policy Iteration

π := any policy, e.g. initialized randomly
repeat:

Evaluate Vπ by solving linear equations.
if Vπ is the same as in the previous iteration:

return π
for each s ∈ S :

π′(s) := arg maxa∈A
∑

s′∈S T (s, a, s ′)Vπ(s ′)
π := π′
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Eigenschaften von Policy Iteration

Jeder Policy-Iteration-Schritt führt zu einer strikten
Verbesserung der Policy in mindestens einem Zustand.

Konvergenz nach endlich vielen Schritten ist garantiert
(da es nur endlich viele verschiedene Policys gibt,
sind nur endlich viele Verbesserungen möglich).

Die berechnete Policy ist immer optimal.

Wie viele Iterationen sind nötig?

In der Praxis scheinen O(|S |) Iterationen auszureichen. . .

. . . aber es sind keine in |S | polynomiellen Garantien
zur Iterationszahl bekannt ( wichtiges offenes Problem!).
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Value Iteration oder Policy Iteration

Was ist schneller: Value Iteration oder Policy Iteration?

kein Verfahren dominiert das andere: es hängt vom MDP ab

Value Iteration benötigt mehr Iterationen als Policy Iteration,
aber Policy Iteration benötigt mehr Zeit pro Iteration,
weil Policy-Bewertung teuer ist (Lösung des LGS)
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