Grundlagen der Kiinstlichen Intelligenz

19. Handeln unter Unsicherheit: Grundlagen

Malte Helmert

Universitat Basel

27. Mai 2013

Einordnung

Einordnung:

Handeln unter Unsicherheit

Umgebung:

@ statisch vs.

° VS. vs. stochastisch

vollstandig vs. VS. beobachtbar
@ diskret vs.
@ ein Agent vs. ()

Losungsansatz:

@ problemspezifisch vs. allgemein vs.

Erinnerung: Klassische Suchprobleme

Erinnerung: Annahmen bei klassischen Suchproblemen
e einzelner Agent in Umgebung (ein Agent)
@ kennt immer genauen Weltzustand (vollstandig beobachtbar)
@ Zustand dndert sich nur durch den Agenten (statisch)
e endlich viele mogliche Zustande/Aktionen (insbes. diskret)

@ Aktionen haben deterministischen Einfluss auf Zustand

Erinnerung: Klassische Suchprobleme

Erinnerung: Annahmen bei klassischen Suchproblemen
e einzelner Agent in Umgebung (ein Agent)
@ kennt immer genauen Weltzustand (vollstandig beobachtbar)
@ Zustand dndert sich nur durch den Agenten (statisch)
e endlich viele mogliche Zustande/Aktionen (insbes. diskret)

@ Aktionen haben deterministischen Einfluss auf Zustand

In vielen praktische Situationen ist Determinismus nicht gegeben!

Erinnerung: Klassische Suchprobleme

Erinnerung: Annahmen bei klassischen Suchproblemen
e einzelner Agent in Umgebung (ein Agent)
@ kennt immer genauen Weltzustand (vollstandig beobachtbar)
@ Zustand dndert sich nur durch den Agenten (statisch)
e endlich viele mogliche Zustande/Aktionen (insbes. diskret)

@ Aktionen haben deterministischen Einfluss auf Zustand

In vielen praktische Situationen ist Determinismus nicht gegeben!

~ jetzt: Handeln in stochastischen Umgebungen

Markov-Entscheidungsprobleme

90000000

Markov-Entscheidungsprobleme

Markov-Entscheidungsprobleme

Oe000000

Erinnerung: Zustandsraum

Zur Erinnerung unsere Definition im klassischen Fall:

Definition (Zustandsraum)
Ein Zustandsraum ist ein 6-Tupel S = (S, A, cost, T, sp, Si) mit
@ S endliche Menge von Zustdnden

o A endliche Menge von Aktionen
o cost: A— R{ Aktionskosten

@ T C S x Ax S Transitionsrelation oder Ubergangsrelation;
deterministisch in (s, a)

so € S Anfangszustand
S, € S Menge der Zielzustande

Markov-Entscheidungsprobleme

Oe000000

Erinnerung: Zustandsraum

Zur Erinnerung unsere Definition im klassischen Fall:

Definition (Zustandsraum)
Ein Zustandsraum ist ein 6-Tupel S = (S, A, cost, T, sp, Si) mit
@ S endliche Menge von Zustdnden

o A endliche Menge von Aktionen
o cost: A— R{ Aktionskosten

@ T C S x Ax S Transitionsrelation oder Ubergangsrelation;
deterministisch in (s, a)

so € S Anfangszustand
@ S, C S Menge der Zielzustdnde

Was andert sich?
@ Deterministische Transitionen ~» Wahrscheinlichkeiten
@ Aktionskosten und Zielzustande ~~ zustandsabhangige
Belohnungen (rewards)

Markov-Entscheidungsprobleme
[e]e] Yololelele)

Markov-Entscheidungsproblem

Definition (Markov-Entscheidungsproblem)

Ein Markov-Entscheidungsproblem (Markov decision process,
MDP) ist ein 5-Tupel M = (5, A, T, R, sp) mit

@ S endliche Menge von Zustdnden

@ A endliche Menge von Aktionen

@ T:5xAxS —|[0,1] Transitionswahrscheinlichkeiten;
erfiillen > - s T(s,a,s') = 1firallesc S, ac A

@ R:S — R Belohnungsfunktion (rewards)

@ sp € S Anfangszustand

Name kommt von so genannter Markov-Eigenschaft:
nachster Zustand hangt nur von aktuellem Zustand,
gewahlter Aktion und Zufall ab, nicht von der , Vorgeschichte"

Markov-Entscheidungsprobleme
[e]e]eY Tolelele)

Unterschiede zum klassischen Fall

© Transitionswahrscheinlichkeiten:
e wird in Zustand s die Aktion a ausgefiihrt,
hangt Nachfolgezustand vom Zufall ab:
Nachfolgezustand ist s’ mit Wahrscheinlichkeit T (s, a, s’)

@ Anwendbare Aktionen:

o Bei MDPs sind iiblicherweise (und in unserer Definition)
immer alle Aktionen anwendbar.

o ,Eigentlich” nicht anwendbare Aktionen oft modelliert
als Aktionen, die immer von s zu s zurtickfuhren
oder in einen speziellen , Fehlerzustand” fiihren.

© Belohnungen:

o Statt Zielzustdnden ist fiir jeden Zustand
eine Belohnung fiir das Erreichen definiert.

o ~- Zielzustdnde iiber Belohnungen modellierbar

e Belohnungen kdnnen negativ sein, was Kosten entspricht.
~~ Aktionskosten iiber Belohnungen modellierbar

Markov-Entscheidungsprobleme
[e]e]eTo Yelele)

MDPs: Ziel des Agenten

@ Ziel des handelnden Agenten bei MDPs ist,
so viele Belohnungen wie moglich aufzusammeln.
@ Zwei Problemvarianten:

e endlicher Horizont H:

Agent fiihrt H Aktionen aus, dann ,,endet" das Problem
o unendlicher Horizont:

Agent interagiert unbegrenzt lang mit der Umgebung

~» wir behandeln beides; unendlicher Horizont ist verbreiteter

Markov-Entscheidungsprobleme
00000®00

Policys

@ Aktionsfolgen sind hier kein gutes Losungskonzept:
beste Aktion im 2. Schritt kann vom zufalligen Ausgang
nach Ausfiihrung der Aktion im 1. Schritt abhangen

@ beste Aktion hangt von aktuellem Zustand ab
(den der Agent immer beobachten kann) sowie
(bei endlichem Horizont) von verbleibender Zeit
~~ berechne Policy (= Strategie) fiir jeden méglichen Zustand
@ stationdre Policy: m: S — A
m(s) Aktion in Zustand s
@ nichtstationare Policy: m: S x {1,...,H} - A
7(s, t) Aktion in Zustand s, wenn noch t Zeitschritte iibrig

Markov-Entscheidungsprobleme
000000e0

Explizite Zustandsraume

@ In diesem Kapitel betrachten wir Algorithmen, die gesamte
Policys (vor-) berechnen, also das Problem komplett I6sen.

@ Aufwand dafiir ist hoch und nur fiir Probleme geeignet,
bei denen alle Zustinde in den Speicher passen
(explizite Darstellung der Zustandsraume)

@ Verallgemeinerungen auf deklarative Zustandsraume
kombinieren MDP-Techniken mit Handlungsplanungstechniken
(,, probabilistische Planung")

Markov-Entscheidungsprobleme
0000000e

Wert einer Policy

Wie gut ist eine Policy 77
o Wie messen wir die von 7 aufgesammelten Belohnungen?
o Wertfunktion V : S +— R (fiir stationare Policys) bzw.
VE:S+— R (t € Np; fiir nichtstationare Policys)
misst erwartete Belohnung bei Ausfiihrung der Policy
von gegebenem Zustand s aus
@ hangt von unmittelbarer Belohnung in s ab, aber auch davon,
welche Belohnungen spater gesammelt werden kdnnen
@ unsere Aufgabe: berechne optimale Policy
(maximiert Vi(s) bzw. VE(s) in jedem Zustand)
Anmerkung: Anfangszustand spielt in diesem Kapitel keine Rolle,
ist aber bei fortgeschrittenen Techniken wichtig.

Endlicher Horizont

Endlicher Horizont
[e] Telelolelelele)

Optimales Verhalten bei endlichem Horizont

@ Sie befinden sich in Sydney und lhr Riickflug nach Hause
startet morgen friith. Was ist die beste Aktion?

Endlicher Horizont
[e] Telelolelelele)

Optimales Verhalten bei endlichem Horizont

@ Sie befinden sich in Sydney und lhr Riickflug nach Hause
startet morgen friith. Was ist die beste Aktion?

@ Sie befinden sich in Sydney und lhr Riickflug nach Hause
startet in drei Monaten. Was ist die beste Aktion?

Endlicher Horizont
[e] Telelolelelele)

Optimales Verhalten bei endlichem Horizont

@ Sie befinden sich in Sydney und lhr Riickflug nach Hause
startet morgen friith. Was ist die beste Aktion?

@ Sie befinden sich in Sydney und lhr Riickflug nach Hause
startet in drei Monaten. Was ist die beste Aktion?

@ Optimales Verhalten bei endlichem Horizont
hangt von verbleibender Restzeit ab.

~ eine nichtstationdre Policy wird bendtigt

Endlicher Horizont
fe]e] Yelolelelele)

Wertfunktion fiir endlichen Horizont

o VK(s) ist Wert von Policy 7 und Restzeit k im Zustand s

@ erwarteter Gesamtnutzen bei Ausfiihrung von 7 in s,
wenn noch k Schritte ausgefiihrt werden kdnnen

k
Z Rt , S]
t=0

k
> R(st)
t=0

Vi) = E

= E ar =7(se,k—t),so0=s

@ R; und s; sind Zufallsvariablen

Endlicher Horizont
[e]e]eY Jolelelele)

Algorithmische Probleme

Policy-Bewertung

Gegeben ein MDP, eine nichtstationdre Policy 7 und ein endlicher
Horizont H, berechne die Wertfunktionen V..

Policy-Optimierung

Gegeben ein MDP und ein endlicher Horizont H,
berechne eine optimale Policy 7* fiir den Horizont H.

Endlicher Horizont
[e]e]eY Jolelelele)

Algorithmische Probleme

Policy-Bewertung

Gegeben ein MDP, eine nichtstationdre Policy 7 und ein endlicher
Horizont H, berechne die Wertfunktionen V..

Policy-Optimierung

Gegeben ein MDP und ein endlicher Horizont H,
berechne eine optimale Policy 7* fiir den Horizont H.

o Wie viele Policys mit endlichem Horizont gibt es
(abhingig von Zustandszahl |S| und Aktionszahl |A])?

Endlicher Horizont
[e]e]eY Jolelelele)

Algorithmische Probleme

Policy-Bewertung

Gegeben ein MDP, eine nichtstationdre Policy 7 und ein endlicher
Horizont H, berechne die Wertfunktionen V..

Policy-Optimierung

Gegeben ein MDP und ein endlicher Horizont H,
berechne eine optimale Policy 7* fiir den Horizont H.

o Wie viele Policys mit endlichem Horizont gibt es
(abhingig von Zustandszahl |S| und Aktionszahl |A])?
o Antwort: |A|ISI'H

Endlicher Horizont
[e]e]eY Jolelelele)

Algorithmische Probleme

Policy-Bewertung

Gegeben ein MDP, eine nichtstationdre Policy 7 und ein endlicher
Horizont H, berechne die Wertfunktionen V..

Policy-Optimierung

Gegeben ein MDP und ein endlicher Horizont H,
berechne eine optimale Policy 7* fiir den Horizont H.

o Wie viele Policys mit endlichem Horizont gibt es
(abhingig von Zustandszahl |S| und Aktionszahl |A])?

o Antwort: |A|ISI'H
~ Ausprobieren aller Alternativen nicht moglich!

@ wir zeigen: Policy-Optimierung kann zuriickgefiihrt werden
auf Berechnung der optimalen Wertfunktion

Endlicher Horizont
[e]e]ele] Yelelele)

Policy-Bewertung bei endlichem Horizont

Benutze dynamische Programmierung:
Wert mit t verbleibenden Zeitschritten einfach zu berechnen,
wenn Wert mit t — 1 verbleibenden Zeitschritten bekannt.

Vse Svt>1:
V2(s) = R(s)
VEi(s) = R(s)+ Y _ T(s,7(s,1),8") - V(s

s'eS

m(s,t)
@ or
%@

Vt Vt—l

us K

Endlicher Horizont
00000®000

Policy-Optimierung: Bellman-Backups

Wie berechnen wir bestméglichen Wert V[(s) gegeben Vi1(s)?

Endlicher Horizont
00000®000

Policy-Optimierung: Bellman-Backups

Wie berechnen wir bestméglichen Wert V(s) gegeben Vi=1(s)?

~s @
0.3

az 0.6

Endlicher Horizont
00000®000

Policy-Optimierung: Bellman-Backups

Wie berechnen wir bestméglichen Wert V(s) gegeben Vi=1(s)?

t—1
Compute Vw

expectations @

Endlicher Horizont
00000®000

Policy-Optimierung: Bellman-Backups

Wie berechnen wir bestméglichen Wert V(s) gegeben Vi=1(s)?

t—1
Compute Vw

expectations @

Compute MAX

Endlicher Horizont

000000e00

Value Iteration fiir endlichen Horizont

Dynamische Programmierung kann fiir
Konstruktion der optimalen Policy verwendet werden:

Value lteration

Vse SVt>1:
V2(s) = R(s)

Vi(s) = R(s) + max Z T(s,a,s) VIH(S)
s’eS

Endlicher Horizont

000000e00

Value Iteration fiir endlichen Horizont

Dynamische Programmierung kann fiir
Konstruktion der optimalen Policy verwendet werden:

Value lteration

Vse SVt >1:
V(s) = R(s)
t _ AR V2 Yo
V.. (s) = R(s) + Tg;g% T(s,a,s) - V.77 (s)

* t) = T / ‘Vt—]. /
(5.0 = omm 3 Tloas) Vi)

Endlicher Horizont

000000e00

Value Iteration fiir endlichen Horizont

Dynamische Programmierung kann fiir
Konstruktion der optimalen Policy verwendet werden:

Value lteration

Vse Svt>1:
V2(s) = R(s)
t _ AR V2 Yo
Vi(s) = R(s) + TE::\}‘(; T(s,a,s)- Vi ' (s")

* t) = T / ‘Vt—]. /
(5.0 = omm 3 Tloas) Vi)

V(s) ist die optimale t-Schritt-Wertfunktion

*

7* ist optimale Policy (deren Wertfunktion Vi, ist)

Endlicher Horizont
000000080

Value lteration: Zeitaufwand

Zeitaufwand von Value lteration:

@ H lterationen

Endlicher Horizont
000000080

Value lteration: Zeitaufwand

Zeitaufwand von Value lteration:
@ H lterationen

@ pro lteration: |S| Zustande (fiir s)

Endlicher Horizont
000000080

Value lteration: Zeitaufwand

Zeitaufwand von Value lteration:
@ H lterationen
@ pro lteration: |S| Zustande (fiir s)
@ pro Zustand: |A| Aktionen (fiir a)

Endlicher Horizont
000000080

Value lteration: Zeitaufwand

Zeitaufwand von Value lteration:

H lterationen

pro lteration: |S| Zustande (fiir s)
pro Zustand: |A| Aktionen (fiir a)
pro Zustand/Aktions-Paar: |S| Nachfolgezustande (fiir s’)

Endlicher Horizont
000000080

Value lteration: Zeitaufwand

Zeitaufwand von Value lteration:
o H lterationen
@ pro lteration: |S| Zustande (fiir s)
@ pro Zustand: |A| Aktionen (fiir a)
@ pro Zustand/Aktions-Paar: |S| Nachfolgezusténde (fiir s”)
~ Laufzeit O(H - |S|? - |A|)

Endlicher Horizont
000000080

Value lteration: Zeitaufwand

Zeitaufwand von Value lteration:
@ H lterationen
@ pro lteration: |S| Zustande (fiir s)
@ pro Zustand: |A| Aktionen (fiir a)
@ pro Zustand/Aktions-Paar: |S| Nachfolgezusténde (fiir s”)
~ Laufzeit O(H - |S|? - |A|)
~~ polynomiell in |S], |A| und H

Frage: Ist das gut?

Endlicher Horizont
000000008

Zusammenfassung: endlicher Horizont

@ Value Iteration berechnet eine optimale Policy:

VE(s) > Vi(s), Vm,s,t

@ Anmerkung: optimale Wertfunktion V, ist eindeutig;
die Policy m* selbst muss nicht eindeutig sein (\WWarum?)

@ Rechenaufwand ist polynomiell in der Grosse des Problems
(gemessen in Zustdnden und Aktionen) und des Horizonts

Unendlicher Horizont

Unendlicher Horizont
0®00000000000000

Probleme fir Wertfunktionen bei unendlichem Horizont

@ Fiir viele MDPs ware jede feste Zeitschranke willkiirlich.
@ Beispiel: ,,Wirf eine Miinze, bis Kopf fallt".

Welcher endliche Horizont ware angemessen?
@ Daher verwendet man meist einen unendlichen Horizont.

@ Problem: bei vielen MDPs ist ,,Summe iiber zukiinftige
Belohnungen" bei unendlichem Horizont nicht wohldefiniert.
(Belohnungen wéren unendlich oder divergent.)

Trick: betrachte diskontierte MDPs, bei denen sofortige
Belohnungen wertvoller sind als zukiinftige.
o Diskontfaktor 0 < v <1 € R

@ zukiinftige Belohnungen in jedem Zeitschritt um Faktor ~
reduziert

Unendlicher Horizont
0O®0000000000000

Wertfunktion fir unendlichen Horizont

Diskontierte Wertfunktion mit Diskontfaktor ~:
e V(s) ist Wert von Policy m im Zustand s

o erwarteter Gesamtnutzen bei Ausfiihrung von 7 in s:
oo

Z'tht , s]
z'y (st)|ar = m(st),s0 = s]

@ R; und s; sind Zufallsvariablen

Ve(s) =

Unendlicher Horizont
0O®0000000000000

Wertfunktion fir unendlichen Horizont

Diskontierte Wertfunktion mit Diskontfaktor ~:
e V(s) ist Wert von Policy m im Zustand s

o erwarteter Gesamtnutzen bei Ausfiihrung von 7 in s:
oo

Z'tht , s]
z'y (st)|ar = m(st),s0 = s]

@ R; und s; sind Zufallsvariablen

Ve(s) =

Warum Diskontierung?
o Wertfunktion ist wohldefiniert: konvergiert immer
@ Belohnungen werden schnell angestrebt: praktisch oft sinnvoll

@ okonomische Argumente

Unendlicher Horizont
000®000000000000

Eigenschaften von diskontierten MDPs

Optimale Policy maximiert Wert jedes Zustands.
@ In diskontierten MDPs gibt es immer
eine optimale stationare Policy (Howard, 1960)

@ Wir schreiben Vi, fiir die Wertfunktion
einer optimalen Policy 7*.

Unendlicher Horizont
0000®00000000000

Algorithmische Probleme

Policy-Bewertung

Gegeben MDP mit unendlichem Horizont, Diskontfaktor ~
und stationdre Policy 7, berechne die Wertfunktion V.

Policy-Optimierung

Gegeben MDP mit unendlichem Horizont und Diskontfaktor -,
berechne eine optimale Policy 7.

Unendlicher Horizont
0000®00000000000

Algorithmische Probleme

Policy-Bewertung

Gegeben MDP mit unendlichem Horizont, Diskontfaktor ~
und stationdre Policy 7, berechne die Wertfunktion V.

Policy-Optimierung

Gegeben MDP mit unendlichem Horizont und Diskontfaktor -,
berechne eine optimale Policy 7.

@ dieselben Probleme wie bei endlichem Horizont

@ Value lteration liber ,alle” Zeitschritte reicht nicht mehr aus,
da Ausfiihrung der Policy kein Ende nimmt

@ Wie konnen wir dennoch V. berechnen?

@ Wie konnen wir einen optimale Policy finden?

Unendlicher Horizont
00000@0000000000

Policy-Bewertung bei unendlichem Horizont

Erinnerung: Zusammenhang V! und V.!~! bei endlichem Horizont:

Bei stationdren Policys ist der Zeitschritt fiir 7 egal und
mit der Diskontierung ergibt sich eine Rekursionsgleichung:

Ve(s) = R(s) +7 > T(s,m(s),s) - Va(s)
s’'eS

Wie konnen wir V. berechnen?

Unendlicher Horizont
000000@®000000000

Berechnung der Wertfunktion

Wie kénnen wir V; berechnen?

Ve(s) = R(s) +7 > _ T(s,m(s),s") - Va(s) firalleses
s’'eS

@ Bei Policy-Bewertung sind R, v, T und 7 bekannt.
e unbekannt: die Werte V. (s) fiir alle s € S

~ lineares Gleichungssystem (LGS) mit |S| Gleichungen
und |S| Variablen

@ dieses LGS hat immer genau eine Lésung, wenn 0 < v < 1 gilt
(dabei geht ein, dass T Wahrscheinlichkeiten kodiert)

~> Losung des LGS mit Methoden der linearen Algebra
(z. B. Gauss'sches Eliminationsverfahren)

Unendlicher Horizont
0000000@00000000

Policy-Optimierung bei unendlichem Horizont

e wie im Fall endlichen Horizonts basiert Policy-Optimierung
auf Berechnung der optimalen Wertfunktion Vi

Unendlicher Horizont
0000000@00000000

Policy-Optimierung bei unendlichem Horizont

e wie im Fall endlichen Horizonts basiert Policy-Optimierung
auf Berechnung der optimalen Wertfunktion Vi
o V, erfiillt Bellman-Gleichung

Vi(s) = R(s) + - max > T(s,a,5)- Vu(s) firalleses
s'eS

Unendlicher Horizont
0000000@00000000

Policy-Optimierung bei unendlichem Horizont

e wie im Fall endlichen Horizonts basiert Policy-Optimierung
auf Berechnung der optimalen Wertfunktion Vi
o V, erfiillt Bellman-Gleichung

Vi(s) = R(s) + - max Z T(s,a,s")- Vi(s') firallese S
s’'eS

e wieder Gleichungssystem mit |S| Gleichungen
und |S| Variablen

Unendlicher Horizont
0000000@00000000

Policy-Optimierung bei unendlichem Horizont

e wie im Fall endlichen Horizonts basiert Policy-Optimierung
auf Berechnung der optimalen Wertfunktion Vi
o V, erfiillt Bellman-Gleichung

Vi(s) = R(s) + - max Z T(s,a,s")- Vi(s') firallese S

s’'eS
e wieder Gleichungssystem mit |S| Gleichungen
und |S| Variablen

@ wegen max-Operator ist Gleichungssystem nichtlinear
und damit nicht ganz einfach zu I6sen

Unendlicher Horizont
0000000@00000000

Policy-Optimierung bei unendlichem Horizont

e wie im Fall endlichen Horizonts basiert Policy-Optimierung
auf Berechnung der optimalen Wertfunktion Vi
o V, erfiillt Bellman-Gleichung

Vi(s) = R(s) + - max Z T(s,a,s")- Vi(s') firallese S
s’'eS

e wieder Gleichungssystem mit |S| Gleichungen
und |S| Variablen

@ wegen max-Operator ist Gleichungssystem nichtlinear
und damit nicht ganz einfach zu I6sen

@ optimale Losung ist Fixpunkt des Bellman-Operators B,
d.h. B[V.] = Vi, wobei

B[V](s) = R(s) +7 - max > T(s,a,8)- V(s
s'eS

Unendlicher Horizont
00000000e0000000

Value lteration fur unendlichen Horizont

@ analog zum endlichen Horizont kann optimale Policy
durch Bellman-Updates berechnet werden:
VO = R, Vt+1 = B[Vt]
@ ausfiihrlicher also fiir alle s € S:
VO(s) = R(s)

Vt :R T AW thl /
(s) (S)+7T€a§§e:$ (s,a,s") (s")

@ konvergiert gegen die optimale Wertfunktion!

lim VI=V,

t—o0

@ Wie viele Iterationen brauchen wir in der Praxis?

Unendlicher Horizont
000000000®000000

Konvergenz von Value lteration

@ Bellman-Backup B ist ein Kontraktionsoperator
fiir Wertfunktionen, d. h. fiir alle V und V' gilt:

IBIVI =BV <~V =V

Hierbei ist || V|| die Maximums-Norm; z.B. ||V|| = 4.5
fir V={s; — 01,5 — —4.5,53 — 3,54 — 2}

~ Bellman-Backups auf beliebigen Wertfunktion V und V’
bringen diese ndher zusammen

Unendlicher Horizont
0000000000e00000

Konvergenz von Value lteration (Fortsetzung)

@ Insbesondere gilt fiir beliebige V:
Vi = BIV]|| = IB[Vi] = B[V][| <~ - Vi = V|

o Fehler von V gegeniiber Vi, reduziert sich pro Schritt
mit Faktor v

Unendlicher Horizont
0000000000e00000

Konvergenz von Value lteration (Fortsetzung)

@ Insbesondere gilt fiir beliebige V:
Vi = B[V]|| = [[B[V.] = BIV][| <~ - ||V« = V||

o Fehler von V gegeniiber Vi, reduziert sich pro Schritt
mit Faktor v

@ mit etwas Rechnung: wenn ||VK — Vk=1|| < §,

[
dann ||V, — V|| < ﬁ

Unendlicher Horizont
0000000000e00000

Konvergenz von Value lteration (Fortsetzung)

@ Insbesondere gilt fiir beliebige V:
Vi = B[V]|| = [[B[V.] = BIV][| <~ - ||V« = V||

o Fehler von V gegeniiber Vi, reduziert sich pro Schritt
mit Faktor v

@ mit etwas Rechnung: wenn ||VK — Vk=1|| < §,

[
dann ||V, — V|| < ﬁ

~» um V, mit einer gewiinschten Genauigkeit € zu approximieren:

o Lose e = 1%7_ nach § auf.

o Stoppe Value Iteration, sobald Abstand
zwischen V¥ und V*~1 héchstens §

Unendlicher Horizont
00000000000e0000

Was ist die berechnete Policy?

@ Angenommen, wir kénnen V, gut durch V¥ approximieren.
@ Welche Policy sollen wir ausfiihren?

Unendlicher Horizont
00000000000e0000

Was ist die berechnete Policy?

@ Angenommen, wir kénnen V, gut durch V¥ approximieren.
@ Welche Policy sollen wir ausfiihren?

o Antwort: gierige Policy beziiglich V¥ (Ein-Schritt-Lookahead):

Vk — T / 'Vk /
greedy[V*](s) argg‘eajsgs (s,a,s") - VA(s')

Unendlicher Horizont
00000000000e0000

Was ist die berechnete Policy?

Angenommen, wir kdnnen V, gut durch V¥ approximieren.

Welche Policy sollen wir ausfiihren?
Antwort: gierige Policy beziiglich V¥ (Ein-Schritt-Lookahead):

Vk — T / 'Vk /
greedy[V*](s) argg‘eajsgs (s,a,s") - VA(s')

Anmerkung: Wertfunktion von greedy[V]
ist nicht unbedingt gleich VX!

@ Wenn Fehler von V¥ gegeniiber V, hochstens ¢ ist,
dann ist Fehler von Vgreedy[vk] gegeniiber V, hochstens %

Unendlicher Horizont
000000000000e000

Diskussion von Value lteration

@ Value lteration ist oft ein guter praktischer Algorithmus
zum Finden einer optimalen Policy.

@ Ein Nachteil ist, dass er nur approximativ ist,
da Vi numerisch angendhert statt exakt berechnet wird.
(Allerdings kénnen wir V, beliebig nahe annihern.)

@ Wir stellen noch einen zweiten Algorithmus vor,
der sich fiir exakte Optimierung eignet.

@ Bei diesem Algorithmus wird nicht iiber (numerische)
Wertfunktionen, sondern iiber (diskrete) Policys iteriert.

Unendlicher Horizont
0000000000000 e00

Policy-Optimierung durch Policy Iteration

o Gegeben feste Policy m kénnen wir die Wertefunktion exakt
berechnen (Policy-Bewertung durch Lsung eines LGS).

@ Policy Iteration nutzt dies aus:
wechsle Policy-Bewertung mit Policy-Verbesserung ab,
bis die Wertfunktion sich nicht mehr dndert.

Policy Iteration

7 := any policy, e.g. initialized randomly
repeat:
Evaluate V;; by solving linear equations.
if V. is the same as in the previous iteration:
return 7
for each s € S:

7'(s) 1= argmaxaea Y e 1(5,a,8")Vr(s')
=

Unendlicher Horizont
00000000000000e0

Eigenschaften von Policy Iteration

@ Jeder Policy-Iteration-Schritt fiihrt zu einer strikten
Verbesserung der Policy in mindestens einem Zustand.

@ Konvergenz nach endlich vielen Schritten ist garantiert
(da es nur endlich viele verschiedene Policys gibt,
sind nur endlich viele Verbesserungen méglich).

@ Die berechnete Policy ist immer optimal.

Unendlicher Horizont
00000000000000e0

Eigenschaften von Policy Iteration

@ Jeder Policy-Iteration-Schritt fiihrt zu einer strikten
Verbesserung der Policy in mindestens einem Zustand.

@ Konvergenz nach endlich vielen Schritten ist garantiert
(da es nur endlich viele verschiedene Policys gibt,
sind nur endlich viele Verbesserungen méglich).

@ Die berechnete Policy ist immer optimal.

Wie viele Iterationen sind nétig?
@ In der Praxis scheinen O(|S|) Iterationen auszureichen. ..

@ ...aber es sind keine in |S| polynomiellen Garantien
zur lterationszahl bekannt (~ wichtiges offenes Problem!).

Unendlicher Horizont
000000000000000e

Value Iteration oder Policy Iteration

@ Was ist schneller: Value Iteration oder Policy Iteration?
@ kein Verfahren dominiert das andere: es hiangt vom MDP ab

@ Value lteration bendtigt mehr Iterationen als Policy Iteration,
aber Policy Iteration bendtigt mehr Zeit pro Iteration,
weil Policy-Bewertung teuer ist (Losung des LGS)

	Markov-Entscheidungsprobleme
	Endlicher Horizont
	Unendlicher Horizont

