
Grundlagen der Künstlichen Intelligenz
18. Brettspiele

Malte Helmert

Universität Basel

24. Mai 2013

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Einordnung

Einordnung:

Brettspiele

Umgebung:

statisch vs. dynamisch

deterministisch vs. nicht-deterministisch vs. stochastisch

vollständig vs. partiell vs. nicht beobachtbar

diskret vs. stetig

ein Agent vs. mehrere Agenten (Gegenspieler)

Lösungsansatz:

problemspezifisch vs. allgemein vs. lernend

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Einführung

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Warum Brettspiele?

Brettspiele sind eines der ältesten Gebiete der KI
(Shannon, Turing 1950).

sehr abstrakte Form von Problem, leicht zu formalisieren

benötigen offensichtlich
”
Intelligenz“ (oder?)

Traum von einer intelligenten Maschine, die Schach spielt,
ist älter als der elektronische Computer

vgl. von Kempelens
”
Schachtürke“ (1769),

Torres y Quevedos
”
El Ajedrecista“ (1912)

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Eingrenzung

Wir betrachten Brettspiele mit folgenden Eigenschaften:

aktuelle Situation durch endliche Menge von Positionen
(= Zuständen) repräsentierbar

Situationsänderungen durch endliche Menge von Zügen
(= Aktionen) repräsentierbar

es gibt zwei Spieler, von denen in jeder Position

einer am Zug ist
oder es ist eine Endposition

Endposition haben Nutzenbewertung

Nutzen von Spieler 2 immer Gegenteil von Nutzen
von Spieler 1 (Nullsummenspiel)

”
endlose“ Spielverläufe gelten als Remis (Nutzen 0)

kein Zufall, keine geheimen Informationen

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Beispiel: Schach

Beispiel (Schach)

Positionen beschrieben durch:

Stellung der Figuren
Wer ist am Zug?
en-passant- und Rochade-Rechte

Züge gegeben durch Spielregeln

Endpositionen: Matt- und Patt-Stellungen der beiden Spieler

Nutzen der Endpositionen aus Sicht des ersten Spielers
(Weiss) zum Beispiel:

+100 wenn Schwarz matt
0 bei Patt
−100 wenn Weiss matt

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Abgrenzungen

Wichtige Klassen von Spielen, die wir nicht berücksichtigen:

mit Zufall (z. B. Backgammon)

mit mehr als zwei Spielern (z. B. Halma)

mit verdeckter Information (z. B. Bridge)

mit gleichzeitigen Zügen (z. B. Diplomacy)

ohne Nullsummeneigenschaft (
”
Spiele“ aus der Spieltheorie

 Auktionen, Wahlverfahren, Wirtschaft, Politik, . . .)

. . . und viele weitere Generalisierungen

Viele dieser Spieltypen können mit ähnlichen/erweiterten
Algorithmen behandelt werden.

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Formalisierung

Brettspiele gegeben durch Zustandsräume
S = 〈S ,A, cost,T , s0, S?〉 mit zwei Erweiterungen

Spielerfunktion player : S \ S? → {1, 2} gibt an,
welcher der beiden Spieler am Zug ist

Nutzenfunktion u : S? → R gibt Nutzen
(aus Sicht von Spieler 1) in Endpositionen an.

sonstige Änderungen:

Aktionskosten cost werden nicht benötigt

(Wir haben ähnliche Definitionen inzwischen oft gesehen
und gehen daher nicht weiter ins Detail.)

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Terminologie

Im Kontext von Brettspielen oft abweichende Begriffe für Dinge,
die wir bereits kennen:

Zustand, Zielzustand, etc. Position, Endposition etc.

Aktion Zug

Suchbaum Spielbaum

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Spezielle vs. allgemeine Algorithmen

Wir betrachten hier Verfahren, die für gute Performance
auf spezielle Brettspiele zugeschnitten werden müssen,
z. B. durch Implementierung einer geeigneten
Bewertungsfunktion.

 vgl. Kapitel zu informierten Suchverfahren

analog zur Verallgemeinerung von Suchverfahren auf
deklarativ beschriebene Probleme (Handlungsplanung)
können auch Brettspiele in einem allgemeinen Rahmen
betrachtet werden, wo Spielregeln (Zustandsräume)
Teil der Eingabe sind

 general game playing, jährliche Wettbewerbe seit 2005

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Warum sind Brettspiele schwierig?

Ebenso wie klassische Suchprobleme haben (interessante)
Brettspiele astronomisch grosse Zustandsräume:

Schach: ca. 1040 erreichbare Zustände;
Partie mit 50 Zügen/Spieler und Verzweigungsgrad 35:
Baumgrösse ca. 35100 ≈ 10154

Go: mehr als 10100 Zustände;
Partie mit ca. 300 Zügen, Verzweigungsgrad ca. 200:
Baumgrösse ca. 200300 ≈ 10690

Dazu kommt, dass es nicht mehr reicht,
einen Lösungspfad zu finden:

benötigt wird eine Strategie, die auf alle möglichen
Verhaltensweisen des Gegners reagiert

üblicherweise implementiert als Algorithmus,
der

”
on demand“ den nächsten Zug liefert

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Warum sind Brettspiele schwierig?

Ebenso wie klassische Suchprobleme haben (interessante)
Brettspiele astronomisch grosse Zustandsräume:

Schach: ca. 1040 erreichbare Zustände;
Partie mit 50 Zügen/Spieler und Verzweigungsgrad 35:
Baumgrösse ca. 35100 ≈ 10154

Go: mehr als 10100 Zustände;
Partie mit ca. 300 Zügen, Verzweigungsgrad ca. 200:
Baumgrösse ca. 200300 ≈ 10690

Dazu kommt, dass es nicht mehr reicht,
einen Lösungspfad zu finden:

benötigt wird eine Strategie, die auf alle möglichen
Verhaltensweisen des Gegners reagiert

üblicherweise implementiert als Algorithmus,
der

”
on demand“ den nächsten Zug liefert

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Algorithmen für Brettspiele

Gute Algorithmen für Brettspiele:

sehen möglichst weit voraus (tiefe Suche)

betrachten nur interessante Teile des Spielbaums
(selektive Suche, analog zu heuristischen Suchverfahren)

nehmen möglichst genaue Bewertung von Positionen vor
(Evaluationsfunktionen, analog zu Heuristiken)

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Minimax-Suche

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Terminologie für Zwei-Personen-Spiele

Spieler werden traditionell MAX und MIN genannt.

Wir wollen Züge für MAX berechnen
(MIN ist der Gegner).

MAX versucht seinen Nutzen in der erreichten Endposition
(gegeben durch die Funktion u) zu maximieren.

MIN versucht u zu minimieren (was MINs Nutzen maximiert)

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Beispiel: Tic-Tac-Toe

XX
XX

X
X

X

XX

X X
O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

�–1 0 +1

XX
X XO

X XOX XO
O
O

X
X XO

OO
O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

Spielbaum mit Spieler am Zug (MAX/MIN) links markiert

in letzter Reihe Endpositionen mit ihrem Nutzen

Grösse des Spielbaums?

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Minimax: Berechnung

1. Tiefensuche durch den Spielbaum

2. Wende Nutzenfunktion auf Endpositionen an.

3. Von unten nach oben durch den Baum berechne Nutzen
von inneren Knoten wie folgt:

MIN ist am Zug:
Nutzen ist Minimum der Nutzenwerte der Kinder
MAX ist am Zug:
Nutzen ist Maximum der Nutzenwerte der Kinder

4. Zugauswahl für MAX in der Wurzel:
wähle einen Zug, der den berechneten Nutzenwert maximiert
(Minimax-Entscheidung)

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Minimax: Beispiel

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Minimax: Diskussion

Minimax ist der einfachste (brauchbare) Spielsuchalgorithmus

Führt zu optimaler Strategie∗ (im Sinne der Spieltheorie,
d. h. unter Annahme perfekter Gegenwehr), ist aber für
komplexe Spiele zu zeitaufwändig.

Egal, wie der Gegner spielt, wird mindestens
der für die Wurzel berechnete Nutzenwert erreicht.

Spielt der Gegner perfekt, wird genau dieser Wert erreicht.

(*) bei Spielen, die nicht in Zyklen geraten können;
ansonsten wird es komplizierter (da der Baum unendlich wird)

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Minimax: Pseudo-Code

(geht von alternierender Spielerreihenfolge aus)

5 ADVERSARIAL SEARCH

function M INIMAX -DECISION(state) returns an action
return argmax

a ∈ ACTIONS(s) M IN-VALUE(RESULT(state ,a))

function MAX -VALUE(state) returns a utility value
if TERMINAL -TEST(state) then return UTILITY (state)
v←−∞
for each a in ACTIONS(state) do
v←MAX (v , M IN-VALUE(RESULT(s, a)))

return v

function M IN-VALUE(state) returns a utility value
if TERMINAL -TEST(state) then return UTILITY (state)
v←∞
for each a in ACTIONS(state) do
v←M IN(v , MAX -VALUE(RESULT(s, a)))

return v

Figure 5.3 An algorithm for calculating minimax decisions. It returnsthe action corresponding
to the best possible move, that is, the move that leads to the outcome with the best utility, under the
assumption that the opponent plays to minimize utility. Thefunctions MAX -VALUE and MIN-VALUE

go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state.
The notationargmaxa∈S f(a) computes the elementa of setS that has the maximum value off(a).

11

Was, wenn der Spielbaum zu gross für Minimax ist?
 approximieren durch Bewertungsfunktionen

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Bewertungsfunktionen

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Bewertungsfunktionen

Problem: Spielbaum zu gross
Idee: suche nur bis zu einer bestimmten Tiefe
wenn diese Tiefe erreicht ist, schätze den Nutzen anhand
heuristischer Kriterien (als wäre eine Endposition erreicht)

Beispiel (Bewertungsfunktion in Schach)

Material: Bauer 1, Springer 3, Läufer 3, Turm 5, Dame 9
positives Vorzeichen für Figuren von MAX, negatives bei MIN

Bauernstruktur, Mobilität, . . .

Daumenregel: 3-Punkte-Vorteil sicherer Sieg

Gute Bewertungsfunktionen sind entscheidend!

Hohe Werte sollten hohen
”
Gewinnchancen“ entsprechen,

damit Verfahren gut funktioniert.
Gleichzeitig sollte Bewertung schnell berechnet werden,
um tief suchen zu können.

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Lineare Bewertungsfunktionen

Am häufigsten werden gewichtete lineare Funktionen verwendet:

w1f1 + w2f2 + · · ·+ wnfn

wobei die wi Gewichte und und die fi Features sind.

enthält Annahme, dass Beiträge der Features unabhängig sind
(normalerweise falsch, aber vertretbar)

erlaubt effiziente inkrementelle Berechnung,
wenn Features sich nicht in jedem Zug ändern

Gewichte können automatisch gelernt werden

Features stammen (in der Regel) von menschlichen Experten

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Wie tief suchen?

Ziel: In gegebener Bedenkzeit möglichst tief suchen

Problem: Suchzeit schwer vorherzusehen

Lösung: iteratives Vertiefen

Abfolge von Suchen, die immer tiefer gehen
Zeit läuft ab: liefere Ergebnis letzter abgeschlossener Suche

Verfeinerung: Suchtiefe nicht uniform, sondern tiefer
in

”
unruhigen“ Positionen (mit grossen Schwankungen

der Bewertungsfunktion) quiescence search

Beispiel Schach: Suche vertiefen, wenn Figurentausch
begonnen, aber nicht abgeschlossen wurde

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Wie tief suchen?

Ziel: In gegebener Bedenkzeit möglichst tief suchen

Problem: Suchzeit schwer vorherzusehen

Lösung: iteratives Vertiefen

Abfolge von Suchen, die immer tiefer gehen
Zeit läuft ab: liefere Ergebnis letzter abgeschlossener Suche

Verfeinerung: Suchtiefe nicht uniform, sondern tiefer
in

”
unruhigen“ Positionen (mit grossen Schwankungen

der Bewertungsfunktion) quiescence search

Beispiel Schach: Suche vertiefen, wenn Figurentausch
begonnen, aber nicht abgeschlossen wurde

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Problem bei begrenzter Suchtiefe: Horizont-Problem

Problem: tiefenbeschränkte Suche kann in manchen Fällen
kritische Aspekte

”
hinter den Suchhorizont schieben“

Black to move

Schwarz hat Materialvorteil

. . . wird aber verlieren (weisser Bauer wird umgewandelt)

Suche, die nicht extrem tief ist, übersieht dies,
da Schwarz vorher oft Schach bieten kann

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche

Kann man Sucharbeit sparen?
Nicht alle Knoten müssen betrachtet werden!

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche

Kann man Sucharbeit sparen?
Nicht alle Knoten müssen betrachtet werden!

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche: allgemein

Player

Opponent

Player

Opponent

..

..

..

m

n

Falls m > n gilt, wird Knoten mit Nutzen in n
bei perfektem Spiel nie erreicht!

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche: Idee

Idee: Führe in Minimax-Tiefensuche zwei Zahlenwerte α und β
mit, so dass für jeden rekursiven Aufruf gilt:

Wenn der Nutzen im aktuellen Teilbaum ≤ α ist,
interessiert er uns nicht, weil MAX dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

Wenn der Nutzen im aktuellen Teilbaum ≥ β ist,
interessiert er uns nicht, weil MIN dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

Wenn α ≥ β im Teilbaum gilt, ist der Teilbaum uninteressant
und muss nicht weiter durchsucht werden (α-β-Pruning).

Wird Alpha-Beta-Suche mit α = −∞ und β = +∞ gestartet,
ist Ergebnis identisch zu Minimax bei weniger Suchaufwand.

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche: Idee

Idee: Führe in Minimax-Tiefensuche zwei Zahlenwerte α und β
mit, so dass für jeden rekursiven Aufruf gilt:

Wenn der Nutzen im aktuellen Teilbaum ≤ α ist,
interessiert er uns nicht, weil MAX dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

Wenn der Nutzen im aktuellen Teilbaum ≥ β ist,
interessiert er uns nicht, weil MIN dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

Wenn α ≥ β im Teilbaum gilt, ist der Teilbaum uninteressant
und muss nicht weiter durchsucht werden (α-β-Pruning).

Wird Alpha-Beta-Suche mit α = −∞ und β = +∞ gestartet,
ist Ergebnis identisch zu Minimax bei weniger Suchaufwand.

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche: Idee

Idee: Führe in Minimax-Tiefensuche zwei Zahlenwerte α und β
mit, so dass für jeden rekursiven Aufruf gilt:

Wenn der Nutzen im aktuellen Teilbaum ≤ α ist,
interessiert er uns nicht, weil MAX dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

Wenn der Nutzen im aktuellen Teilbaum ≥ β ist,
interessiert er uns nicht, weil MIN dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

Wenn α ≥ β im Teilbaum gilt, ist der Teilbaum uninteressant
und muss nicht weiter durchsucht werden (α-β-Pruning).

Wird Alpha-Beta-Suche mit α = −∞ und β = +∞ gestartet,
ist Ergebnis identisch zu Minimax bei weniger Suchaufwand.

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche: Idee

Idee: Führe in Minimax-Tiefensuche zwei Zahlenwerte α und β
mit, so dass für jeden rekursiven Aufruf gilt:

Wenn der Nutzen im aktuellen Teilbaum ≤ α ist,
interessiert er uns nicht, weil MAX dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

Wenn der Nutzen im aktuellen Teilbaum ≥ β ist,
interessiert er uns nicht, weil MIN dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

Wenn α ≥ β im Teilbaum gilt, ist der Teilbaum uninteressant
und muss nicht weiter durchsucht werden (α-β-Pruning).

Wird Alpha-Beta-Suche mit α = −∞ und β = +∞ gestartet,
ist Ergebnis identisch zu Minimax bei weniger Suchaufwand.

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche: Pseudo-Code

12 Chapter 5. Adversarial Search

function ALPHA-BETA-SEARCH(state) returns an action
v←MAX -VALUE(state ,−∞,+∞)
return theaction in ACTIONS(state) with valuev

function MAX -VALUE(state ,α,β) returns a utility value
if TERMINAL -TEST(state) then return UTILITY (state)
v←−∞
for each a in ACTIONS(state) do
v←MAX (v , M IN-VALUE(RESULT(s,a),α,β))
if v ≥ β then return v
α←MAX (α, v)

return v

function M IN-VALUE(state ,α,β) returns a utility value
if TERMINAL -TEST(state) then return UTILITY (state)
v←+∞
for each a in ACTIONS(state) do
v←M IN(v , MAX -VALUE(RESULT(s,a) ,α,β))
if v ≤ α then return v
β←M IN(β, v)

return v

Figure 5.7 The alpha–beta search algorithm. Notice that these routines are the same as the
M INIMAX functions in Figure??, except for the two lines in each of MIN-VALUE and MAX -VALUE

that maintainα andβ (and the bookkeeping to pass these parameters along).
Anmerkung: bei mehreren identisch bewerteten Zügen
muss Alpha-Beta-Search den ersten Maximierer wählen.

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche: Beispiel

MAX

3 12 8

MIN 3

3

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche: Beispiel

MAX

3 12 8

MIN 3

2

2

X X

3

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche: Beispiel

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche: Beispiel

MAX

3 12 8

MIN 3

2

2

X X
14

14

5

5

3

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Alpha-Beta-Suche: Beispiel

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Wie viel bringt Alpha-Beta-Suche?

Annahme: uniformer Spielbaum, Tiefe d , Verzweigungsgrad b ≥ 2;
MAX- und MIN-Positionen immer abwechselnd

Alpha-Beta-Suche ist am erfolgreichsten, wenn bester Zug
für den Spieler am Zug immer als erstes betrachtet wird

also ein maximierender Zug bei MAX,
ein minimierender Zug bei MIN

 Aufwand reduziert sich in diesem besten Fall
von O(bd) (Minimax) auf O(bd/2)

 doppelte Suchtiefe in derselben Zeit möglich

in der Praxis kommt man oft sehr nah an das Optimum heran

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Stand der Wissenschaft

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Stand der Wissenschaft

einige bekannte Brettspiele:

Schach: nächste Folien

Othello: Logistello besiegt 1997 menschlichen Weltmeister;
beste Computer-Spieler deutlich stärker als beste Menschen

Dame (Checkers): Chinook offizieller Weltmeister (seit 1994);
2007 Unbesiegbarkeit gezeigt (Spiel

”
gelöst“)

Go: Die besten Programme (Zen, Mogo, Crazystone)
verwenden Monte-Carlo-Techniken (UCT) und sind
in etwa auf dem Niveau starker Amateure (1 kyu/1 dan)

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Computerschach

Weltmeister Garri Kasparov 1997 durch Deep Blue
in 6 Partien 3,5 : 2,5 besiegt

spezialisierte Schach-Hardware, 30 Knoten mit je 16 Chips

Alpha-Beta-Suche (mit Erweiterungen)

Eröffnungsdatenbank aus Millionen von Schachpartien

Heutzutage spielt normale PC-Hardware auf Weltmeisterniveau.

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Computerschach: Zitate

Claude Shannon (1949)

The chess machine is an ideal one to start with, since

1 the problem is sharply defined both in allowed operations
(the moves) and in the ultimate goal (checkmate),

2 it is neither so simple as to be trivial nor too difficult
for satisfactory solution,

3 chess is generally considered to require “thinking”
for skilful play, [. . .]

4 the discrete structure of chess fits well
into the digital nature of modern computers.

Alexander Kronrod (1965)

Chess is the drosophila of Artificial Intelligence.

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Computerschach: Zitate

Claude Shannon (1949)

The chess machine is an ideal one to start with, since

1 the problem is sharply defined both in allowed operations
(the moves) and in the ultimate goal (checkmate),

2 it is neither so simple as to be trivial nor too difficult
for satisfactory solution,

3 chess is generally considered to require “thinking”
for skilful play, [. . .]

4 the discrete structure of chess fits well
into the digital nature of modern computers.

Alexander Kronrod (1965)

Chess is the drosophila of Artificial Intelligence.

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Computerschach: noch ein Zitat

John McCarthy (1997)

In 1965, the Russian mathematician Alexander Kronrod said,
‘Chess is the Drosophila of artificial intelligence.’

However, computer chess has developed much as genetics
might have if the geneticists had concentrated their efforts
starting in 1910 on breeding racing Drosophilae. We would have
some science, but mainly we would have very fast fruit flies.

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Computerschach: noch ein Zitat

John McCarthy (1997)

In 1965, the Russian mathematician Alexander Kronrod said,
‘Chess is the Drosophila of artificial intelligence.’

However, computer chess has developed much as genetics
might have if the geneticists had concentrated their efforts
starting in 1910 on breeding racing Drosophilae. We would have
some science, but mainly we would have very fast fruit flies.

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Fazit

Einführung Minimax-Suche Bewertungsfunktionen Alpha-Beta-Suche Stand der Wissenschaft Fazit

Zusammenfassung

Brettspiele können verstanden werden als Erweiterung
von klassischen Suchproblemen um einen Gegenspieler.

Beide Spieler versuchen eine Endposition mit (für sie)
maximalem Nutzen zu erreichen.

Minimax ist ein Baumsuchalgorithmus, der perfekt spielt
(im Sinne der Spieltheorie), aber Aufwand O(bd) hat
(Verzweigungsgrad b, Suchtiefe d)

in der Praxis muss Suchtiefe oft begrenzt werden;
dann Anwendung von Bewertungsfunktionen
(meist Linearkombinationen von Features)

Alpha-Beta-Suche merkt sich, welchen Nutzen
beide Spieler anderswo im Baum erzwingen können
und vermeidet so viele unnötige Berechnungen

im besten Fall Aufwand O(bd/2) bei uniformen Bäumen
 doppelt so tiefe Suche wie bei Minimax möglich

	Einführung
	Minimax-Suche
	Bewertungsfunktionen
	Alpha-Beta-Suche
	Stand der Wissenschaft
	Fazit

