Grundlagen der Kiinstlichen Intelligenz
18. Brettspiele

Malte Helmert

Universitat Basel

24. Mai 2013

Einordnung

Einordnung:

Brettspiele

Umgebung:

@ statisch vs.

@ deterministisch vs. VS.

vollstandig vs. VS. beobachtbar
o diskret vs.
° vs. mehrere Agenten (Gegenspieler)

Losungsansatz:

@ problemspezifisch vs. Vs.

Einfiihrung

9000000000

Einfiihrung

Einfiihrung
0®00000000

Warum Brettspiele?

Brettspiele sind eines der iltesten Gebiete der Kl
(Shannon, Turing 1950).

@ sehr abstrakte Form von Problem, leicht zu formalisieren
e bendtigen offensichtlich , Intelligenz" (oder?)

@ Traum von einer intelligenten Maschine, die Schach spielt,
ist dlter als der elektronische Computer

@ vgl. von Kempelens , Schachtiirke” (1769),
Torres y Quevedos ,, El Ajedrecista” (1912)

Einfiihrung
00®0000000

Eingrenzung

Wir betrachten Brettspiele mit folgenden Eigenschaften:
@ aktuelle Situation durch endliche Menge von Positionen
(= Zustanden) reprasentierbar
@ Situationsdnderungen durch endliche Menge von Ziigen
(= Aktionen) reprasentierbar
@ es gibt zwei Spieler, von denen in jeder Position

e einer am Zug ist
e oder es ist eine Endposition

o Endposition haben Nutzenbewertung

@ Nutzen von Spieler 2 immer Gegenteil von Nutzen
von Spieler 1 (Nullsummenspiel)

o ,endlose” Spielverldufe gelten als Remis (Nutzen 0)

kein Zufall, keine geheimen Informationen

Einfiihrung
000®000000

Beispiel: Schach

Beispiel (Schach)
@ Positionen beschrieben durch:

e Stellung der Figuren
o Wer ist am Zug?
e en-passant- und Rochade-Rechte

@ Ziige gegeben durch Spielregeln

@ Endpositionen: Matt- und Patt-Stellungen der beiden Spieler
@ Nutzen der Endpositionen aus Sicht des ersten Spielers
(Weiss) zum Beispiel:
e +100 wenn Schwarz matt
e 0 bei Patt
o —100 wenn Weiss matt

Einfiihrung
0000®00000

Abgrenzungen

Wichtige Klassen von Spielen, die wir nicht beriicksichtigen:
e mit Zufall (z. B. Backgammon)
@ mit mehr als zwei Spielern (z. B. Halma)
@ mit verdeckter Information (z. B. Bridge)
@ mit gleichzeitigen Ziigen (z. B. Diplomacy)
@ ohne Nullsummeneigenschaft (,Spiele” aus der Spieltheorie
~ Auktionen, Wahlverfahren, Wirtschaft, Politik, .. .)
@ ... und viele weitere Generalisierungen

Viele dieser Spieltypen kdnnen mit dhnlichen/erweiterten
Algorithmen behandelt werden.

Einfiihrung
00000e0000

Formalisierung

Brettspiele gegeben durch Zustandsraume
S =(S,A, cost, T,sp,Ss) mit zwei Erweiterungen

e Spielerfunktion player: S\ S, — {1,2} gibt an,
welcher der beiden Spieler am Zug ist

@ Nutzenfunktion v : S, — R gibt Nutzen
(aus Sicht von Spieler 1) in Endpositionen an.

sonstige Anderungen:

@ Aktionskosten cost werden nicht benétigt

(Wir haben 3hnliche Definitionen inzwischen oft gesehen
und gehen daher nicht weiter ins Detail.)

Einfiihrung
000000e000

Terminologie

Im Kontext von Brettspielen oft abweichende Begriffe fiir Dinge,
die wir bereits kennen:

@ Zustand, Zielzustand, etc. ~» Position, Endposition etc.
o Aktion ~» Zug

@ Suchbaum ~~ Spielbaum

Einfiihrung
0000000e00

Spezielle vs. allgemeine Algorithmen

@ Wir betrachten hier Verfahren, die fiir gute Performance
auf spezielle Brettspiele zugeschnitten werden miissen,
z. B. durch Implementierung einer geeigneten
Bewertungsfunktion.

~ vgl. Kapitel zu informierten Suchverfahren
@ analog zur Verallgemeinerung von Suchverfahren auf
deklarativ beschriebene Probleme (Handlungsplanung)
kdnnen auch Brettspiele in einem allgemeinen Rahmen

betrachtet werden, wo Spielregeln (Zustandsraume)
Teil der Eingabe sind

~» general game playing, jahrliche Wettbewerbe seit 2005

Einfiihrung
000000000

Warum sind Brettspiele schwierig?

Ebenso wie klassische Suchprobleme haben (interessante)
Brettspiele astronomisch grosse Zustandsraume:

@ Schach: ca. 10%° erreichbare Zustinde;
Partie mit 50 Ziigen/Spieler und Verzweigungsgrad 35:
Baumgrésse ca. 35190 ~ 10154

e Go: mehr als 10190 Zustinde;
Partie mit ca. 300 Ziigen, Verzweigungsgrad ca. 200:
Baumgrosse ca. 200300 ~ 10990

Einfiihrung
000000000

Warum sind Brettspiele schwierig?

Ebenso wie klassische Suchprobleme haben (interessante)
Brettspiele astronomisch grosse Zustandsraume:

@ Schach: ca. 10%° erreichbare Zustinde;
Partie mit 50 Ziigen/Spieler und Verzweigungsgrad 35:
Baumgrésse ca. 35190 ~ 10154

e Go: mehr als 10190 Zustinde;
Partie mit ca. 300 Ziigen, Verzweigungsgrad ca. 200:
Baumgrosse ca. 200300 ~ 10990

Dazu kommt, dass es nicht mehr reicht,
einen Losungspfad zu finden:

@ bendtigt wird eine Strategie, die auf alle moglichen
Verhaltensweisen des Gegners reagiert

@ (blicherweise implementiert als Algorithmus,
der ,,on demand” den nachsten Zug liefert

Einfiihrung
©000000000e

Algorithmen fiir Brettspiele

Gute Algorithmen fiir Brettspiele:
@ sehen moglichst weit voraus (tiefe Suche)

@ betrachten nur interessante Teile des Spielbaums
(selektive Suche, analog zu heuristischen Suchverfahren)

@ nehmen moglichst genaue Bewertung von Positionen vor
(Evaluationsfunktionen, analog zu Heuristiken)

Minimax-Suche

Minimax-Suche
0®00000

Terminologie fiir Zwei-Personen-Spiele

@ Spieler werden traditionell MAX und MIN genannt.

o Wir wollen Ziige fiir MAX berechnen
(MIN ist der Gegner).

@ MAX versucht seinen Nutzen in der erreichten Endposition
(gegeben durch die Funktion u) zu maximieren.

@ MIN versucht u zu minimieren (was MINs Nutzen maximiert)

Minimax-Suche
00®0000

Beispiel: Tic-Tac-Toe

MAX ()
MIN (o)
MAX (x)

MIN (o)

TERMINAL [[olx] [o]
O
utity -1 0 +1

@ Spielbaum mit Spieler am Zug (MAX/MIN) links markiert
@ in letzter Reihe Endpositionen mit ihrem Nutzen

@ Grosse des Spielbaums?

Minimax-Suche
000000

Minimax: Berechnung

1. Tiefensuche durch den Spielbaum
2. Wende Nutzenfunktion auf Endpositionen an.
3. Von unten nach oben durch den Baum berechne Nutzen
von inneren Knoten wie folgt:
o MIN ist am Zug:
Nutzen ist Minimum der Nutzenwerte der Kinder
o MAX ist am Zug:
Nutzen ist Maximum der Nutzenwerte der Kinder
4. Zugauswahl fiir MAX in der Wurzel:
wahle einen Zug, der den berechneten Nutzenwert maximiert
(Minimax-Entscheidung)

Minimax-Suche
000000

Minimax: Beispiel

MAX

MIN

Minimax-Suche
00000e0

Minimax: Diskussion

@ Minimax ist der einfachste (brauchbare) Spielsuchalgorithmus

e Fiihrt zu optimaler Strategie® (im Sinne der Spieltheorie,
d. h. unter Annahme perfekter Gegenwehr), ist aber fiir
komplexe Spiele zu zeitaufwindig.

o Egal, wie der Gegner spielt, wird mindestens
der fiir die Wurzel berechnete Nutzenwert erreicht.

@ Spielt der Gegner perfekt, wird genau dieser Wert erreicht.

(*) bei Spielen, die nicht in Zyklen geraten kdnnen;
ansonsten wird es komplizierter (da der Baum unendlich wird)

Minimax-Suche
000000e

Minimax: Pseudo-Code

(geht von alternierender Spielerreihenfolge aus)

function MINIMAX -DECISIONstate) returns an action
returnargmax, . Actionss) MIN-VALUE(RESULT(state, a))

function MAX -VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
V<4 —00
for each a in ACTIONS(state) do
v < MAX (v, MIN-VALUE(RESULT(s, a)))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
(R e'e]
for each a in ACTIONS(state) do
v <~ MIN(v, MAX-VALUE(RESULT(s, a)))
return v

Was, wenn der Spielbaum zu gross fiir Minimax ist?
~~ approximieren durch Bewertungsfunktionen

Bewertungsfunktionen

@®0000

Bewertungsfunktionen

Bewertungsfunktionen
0®000

Bewertungsfunktionen

@ Problem: Spielbaum zu gross

@ |dee: suche nur bis zu einer bestimmten Tiefe

@ wenn diese Tiefe erreicht ist, schatze den Nutzen anhand
heuristischer Kriterien (als wére eine Endposition erreicht)

Beispiel (Bewertungsfunktion in Schach)

e Material: Bauer 1, Springer 3, Laufer 3, Turm 5, Dame 9
positives Vorzeichen fiir Figuren von MAX, negatives bei MIN

@ Bauernstruktur, Mobilitat, ...

Daumenregel: 3-Punkte-Vorteil ~~ sicherer Sieg

Gute Bewertungsfunktionen sind entscheidend!

@ Hohe Werte sollten hohen ,,Gewinnchancen" entsprechen,
damit Verfahren gut funktioniert.

@ Gleichzeitig sollte Bewertung schnell berechnet werden,
um tief suchen zu konnen.

Bewertungsfunktionen
00®00

Lineare Bewertungsfunktionen

Am h&ufigsten werden gewichtete lineare Funktionen verwendet:
wifi + wof + - - - + wpf,

wobei die w; Gewichte und und die f; Features sind.
@ enthdlt Annahme, dass Beitrdge der Features unabhingig sind
(normalerweise falsch, aber vertretbar)

@ erlaubt effiziente inkrementelle Berechnung,
wenn Features sich nicht in jedem Zug dndern

o Gewichte kdnnen automatisch gelernt werden

o Features stammen (in der Regel) von menschlichen Experten

Bewertungsfunktionen
00080

Wie tief suchen?

@ Ziel: In gegebener Bedenkzeit moglichst tief suchen
@ Problem: Suchzeit schwer vorherzusehen

@ Ldsung: iteratives Vertiefen

o Abfolge von Suchen, die immer tiefer gehen
o Zeit lauft ab: liefere Ergebnis letzter abgeschlossener Suche

Bewertungsfunktionen
00080

Wie tief suchen?

@ Ziel: In gegebener Bedenkzeit moglichst tief suchen

@ Problem: Suchzeit schwer vorherzusehen
@ Ldsung: iteratives Vertiefen
o Abfolge von Suchen, die immer tiefer gehen
o Zeit lauft ab: liefere Ergebnis letzter abgeschlossener Suche
@ Verfeinerung: Suchtiefe nicht uniform, sondern tiefer
in ,,unruhigen* Positionen (mit grossen Schwankungen
der Bewertungsfunktion) ~~ quiescence search
e Beispiel Schach: Suche vertiefen, wenn Figurentausch
begonnen, aber nicht abgeschlossen wurde

Bewertungsfunktionen

O0O00e

Problem bei begrenzter Suchtiefe: Horizont-Problem

Problem: tiefenbeschrankte Suche kann in manchen Fillen
kritische Aspekte , hinter den Suchhorizont schieben”

Black to move

@ Schwarz hat Materialvorteil
@ ...wird aber verlieren (weisser Bauer wird umgewandelt)
@ Suche, die nicht extrem tief ist, Uibersieht dies,

da Schwarz vorher oft Schach bieten kann

Alpha-Beta-Suche
©0000000000

Alpha-Beta-Suche

Alpha-Beta-Suche
0®000000000

Alpha-Beta-Suche

MAX

MIN

Kann man Sucharbeit sparen?

Alpha-Beta-Suche
0®000000000

Alpha-Beta-Suche

MAX

MIN

Kann man Sucharbeit sparen?
Nicht alle Knoten miissen betrachtet werden!

MAX

MIN

Alpha-Beta-Suche
00®00000000

Alpha-Beta-Suche: allgemein

Player

Opponent

Player

Opponent

Falls m > n gilt, wird Knoten mit Nutzen in n
bei perfektem Spiel nie erreicht!

Alpha-Beta-Suche
000®0000000

Alpha-Beta-Suche: Idee

Idee: Fiihre in Minimax-Tiefensuche zwei Zahlenwerte o und 8
mit, so dass fiir jeden rekursiven Aufruf gilt:

Alpha-Beta-Suche
000®0000000

Alpha-Beta-Suche: Idee

Idee: Fiihre in Minimax-Tiefensuche zwei Zahlenwerte o und 8
mit, so dass fiir jeden rekursiven Aufruf gilt:

@ Wenn der Nutzen im aktuellen Teilbaum < « ist,
interessiert er uns nicht, weil MAX dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

@ Wenn der Nutzen im aktuellen Teilbaum > f ist,
interessiert er uns nicht, weil MIN dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

Alpha-Beta-Suche
000®0000000

Alpha-Beta-Suche: Idee

Idee: Fiihre in Minimax-Tiefensuche zwei Zahlenwerte o und 8
mit, so dass fiir jeden rekursiven Aufruf gilt:

@ Wenn der Nutzen im aktuellen Teilbaum < « ist,
interessiert er uns nicht, weil MAX dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

@ Wenn der Nutzen im aktuellen Teilbaum > f ist,
interessiert er uns nicht, weil MIN dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

Wenn « > 3 im Teilbaum gilt, ist der Teilbaum uninteressant
und muss nicht weiter durchsucht werden (a-/3-Pruning).

Alpha-Beta-Suche
000®0000000

Alpha-Beta-Suche: Idee

Idee: Fiihre in Minimax-Tiefensuche zwei Zahlenwerte o und 8
mit, so dass fiir jeden rekursiven Aufruf gilt:

@ Wenn der Nutzen im aktuellen Teilbaum < « ist,
interessiert er uns nicht, weil MAX dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

@ Wenn der Nutzen im aktuellen Teilbaum > f ist,

interessiert er uns nicht, weil MIN dann bei perfektem Spiel
diesen Teilbaum nicht betreten muss

Wenn « > 3 im Teilbaum gilt, ist der Teilbaum uninteressant
und muss nicht weiter durchsucht werden (a-/3-Pruning).

Wird Alpha-Beta-Suche mit @« = —oo und 8 = 400 gestartet,
ist Ergebnis identisch zu Minimax bei weniger Suchaufwand.

Alpha-Beta-Suche
0000®000000

Alpha-Beta-Suche: Pseudo-Code

function ALPHA-BETA-SEARCH(state) returnsan action
v < MAX-VALUE(state, —00, +00)
return the action in ACTIONS(state) with valuev

function MAX-VALUE(state, a,) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
UV {— —00
for each a in ACTIONY(state) do
v < MAX (v, MIN-VALUE(RESULT(s,a), @, 5))
if v > SBthenreturnv
o Max(a, v)
return v

function MIN-VALUE(state, a, B) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
V4= +00
for each a in ACTIONY(state) do
v+ MIN(v, MAX-VALUE(RESULT(s,a) , e, 3))
ifv < athenreturnv
B+ MIN(B, v)
return v

Anmerkung: bei mehreren identisch bewerteten Ziigen
muss ALPHA-BETA-SEARCH den ersten Maximierer wahlen.

Alpha-Beta-Suche
00000e00000

Alpha-Beta-Suche: Beispiel

MAX >3

MIN 3

Alpha-Beta-Suche

000000e@0000

Alpha-Beta-Suche: Beispiel

MAX

MIN

Alpha-Beta-Suche

0O000000e000

Alpha-Beta-Suche: Beispiel

MAX

MIN

Alpha-Beta-Suche

0O0000000e00

Alpha-Beta-Suche: Beispiel

MAX

MIN

Alpha-Beta-Suche

000000000 e0

Alpha-Beta-Suche: Beispiel

MAX

MIN

Alpha-Beta-Suche
0000000000e

Wie viel bringt Alpha-Beta-Suche?

Annahme: uniformer Spielbaum, Tiefe d, Verzweigungsgrad b > 2;
MAX- und MIN-Positionen immer abwechselnd

@ Alpha-Beta-Suche ist am erfolgreichsten, wenn bester Zug
fiir den Spieler am Zug immer als erstes betrachtet wird

e also ein maximierender Zug bei MAX,
ein minimierender Zug bei MIN

~ Aufwand reduziert sich in diesem besten Fall
von O(b9) (Minimax) auf O(b?/?)
~ doppelte Suchtiefe in derselben Zeit moglich

@ in der Praxis kommt man oft sehr nah an das Optimum heran

Stand der Wissenschaft

Stand der Wissenschaft
0®000

Stand der Wissenschaft

einige bekannte Brettspiele:
@ Schach: ~~ néchste Folien

@ Othello: Logistello besiegt 1997 menschlichen Weltmeister;
beste Computer-Spieler deutlich starker als beste Menschen

@ Dame (Checkers): Chinook offizieller Weltmeister (seit 1994);
2007 Unbesiegbarkeit gezeigt (Spiel , geldst")

e Go: Die besten Programme (Zen, Mogo, Crazystone)
verwenden Monte-Carlo-Techniken (UCT) und sind
in etwa auf dem Niveau starker Amateure (1 kyu/1 dan)

Stand der Wissenschaft
00800

Computerschach

Weltmeister Garri Kasparov 1997 durch Deep Blue
in 6 Partien 3,5:2,5 besiegt

@ spezialisierte Schach-Hardware, 30 Knoten mit je 16 Chips
@ Alpha-Beta-Suche (mit Erweiterungen)

o Eréffnungsdatenbank aus Millionen von Schachpartien

Heutzutage spielt normale PC-Hardware auf Weltmeisterniveau.

funktionen he Stand der Wissenschaft
000®0

Computerschach: Zitate

Claude Shannon (1949)

The chess machine is an ideal one to start with, since

2]
o
o

the problem is sharply defined both in allowed operations
(the moves) and in the ultimate goal (checkmate),

it is neither so simple as to be trivial nor too difficult
for satisfactory solution,

chess is generally considered to require “thinking”
for skilful play, [...]

the discrete structure of chess fits well
into the digital nature of modern computers.

Stand der Wissenschaft Fazit
000®0 oo

Computerschach: Zitate

Claude Shannon (1949)
The chess machine is an ideal one to start with, since

@ the problem is sharply defined both in allowed operations
(the moves) and in the ultimate goal (checkmate),

@ it is neither so simple as to be trivial nor too difficult
for satisfactory solution,

© chess is generally considered to require “thinking”
for skilful play, [...]

@ the discrete structure of chess fits well
into the digital nature of modern computers.

Alexander Kronrod (1965)
Chess is the drosophila of Artificial Intelligence.

Stand der Wissenschaft
[eleTele])

Computerschach: noch ein Zitat

John McCarthy (1997)

In 1965, the Russian mathematician Alexander Kronrod said,
‘Chess is the Drosophila of artificial intelligence.’

Stand der Wissenschaft
[eleTele])

Computerschach: noch ein Zitat

John McCarthy (1997)

In 1965, the Russian mathematician Alexander Kronrod said,
‘Chess is the Drosophila of artificial intelligence.’

However, computer chess has developed much as genetics
might have if the geneticists had concentrated their efforts
starting in 1910 on breeding racing Drosophilae. We would have
some science, but mainly we would have very fast fruit flies.

Fazit

Zusammenfassung

Brettspiele konnen verstanden werden als Erweiterung
von klassischen Suchproblemen um einen Gegenspieler.
Beide Spieler versuchen eine Endposition mit (fiir sie)
maximalem Nutzen zu erreichen.

Minimax ist ein Baumsuchalgorithmus, der perfekt spielt
(im Sinne der Spieltheorie), aber Aufwand O(b?) hat
(Verzweigungsgrad b, Suchtiefe d)

in der Praxis muss Suchtiefe oft begrenzt werden;

dann Anwendung von Bewertungsfunktionen

(meist Linearkombinationen von Features)
Alpha-Beta-Suche merkt sich, welchen Nutzen

beide Spieler anderswo im Baum erzwingen kdnnen

und vermeidet so viele unnotige Berechnungen

im besten Fall Aufwand O(b9/?) bei uniformen Biumen
~ doppelt so tiefe Suche wie bei Minimax méglich

	Einführung
	Minimax-Suche
	Bewertungsfunktionen
	Alpha-Beta-Suche
	Stand der Wissenschaft
	Fazit

