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Motivation fiir Aussagenlogik

o Aussagenlogik erlaubt Reprasentation von Wissen
und Schlussfolgerungen auf Grundlage dieses Wissens
@ viele Anwendungsprobleme direkt kodierbar, z. B.:
e Constraint-Satisfaction-Probleme aller Art
e Schaltkreisentwurf und -verifikation
@ viele Probleme verwenden Logik als einen Bestandteil, z. B.:

e Handlungsplanung
o General Game Playing
o Beschreibungslogik-Anfragen (Semantic Web)
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Aussagenlogik: algorithmische Fragestellungen

wesentliche Fragestellungen:

@ Schlussfolgern (© = ¢7):

Folgt aus Formeln © die Formel ¢ logisch?
o Aquivalenz (p = v):

Sind Formeln ¢ und 1 logisch dquivalent?

e Erfiillbarkeit (SAT):
Ist Formel ¢ erfiillbar? Falls ja, finde eine erfiillende Belegung.
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Das Erfiillbarkeitsproblem

Das Erfiillbarkeitsproblem (SAT)

Gegeben:
aussagenlogische Formel in konjunktiver Normalform (KNF)

Ublicherweise reprisentiert als Paar (V, A):
@ V Menge von Aussagevariablen (Propositionen)

@ A Menge von Klauseln liber V
(Klausel = Menge von Literalen v bzw. =v mit v € V)

Gesucht:
o erfiillende Belegung der Formel (Modell)

@ oder Beweis, dass keine erfiillende Belegung existiert

SAT ist ein beriihmtes NP-vollstindiges Problem
(Cook 1971; Levin 1973).
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Relevanz von SAT

@ Unter SAT versteht man oft auch das Erfiillbarkeitsproblem
fiir allgemeine Logikformeln (statt Einschrankung auf KNF).

o Allgemeines SAT ist auf den KNF-Fall zuriickfiihrbar
(Aufwand fiir Umformung ist O(n))

@ Alle zuvor genannten Logikprobleme sind auf SAT
zuriickfiihrbar (Aufwand fiir Umformung ist O(n))

~~ SAT-Algorithmen sehr wichtig und sehr intensiv erforscht

dieses Kapitel: SAT-Algorithmen
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Systematische Suche: DPLL
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SAT vs. CSP

SAT kann als Constraint-Satisfaction-Problem aufgefasst werden:
@ CSP-Variablen = Aussagevariablen
@ Wertebereiche = {F, T}
@ Constraints = Klauseln
Allerdings haben wir hier oft Constraints,
die mehr als zwei Variablen betreffen.
Wegen Verwandtschaft alle CSP-ldeen auf SAT anwendbar:
@ Suche
@ Inferenz

@ Variablen- und Werteordnungen
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Der DPLL-Algorithmus

Der DPLL-Algorithmus (Davis/Putnam/Logemann/Loveland)
entspricht Backtracking mit Inferenz bei CSPs.

o rekursiver Aufruf DPLL(A, /)
fiir Klauselmenge A und partielle Belegung /

@ Ergebnis ist erfiillende Belegung, die | erweitert;
unsatisfiable, wenn keine solche Belegung existiert

@ oberster Aufruf als DPLL(A, 0)

Inferenz in DPLL:

@ simplify: nachdem der Variablen v der Wert d zugewiesen
wird, werden alle Klauseln vereinfacht, die iiber v sprechen
~~ entspricht Forward Checking (fiir mehrstellige Constraints)

@ Unit Propagation: Variablen, die in Klauseln ohne weitere

Variablen (Einheitsklauseln) auftreten, werden sofort belegt
(entspricht minimum remaining values-Variablenordnung)
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Der DPLL-Algorithmus: Pseudo-Code

function DPLL(A, /):

if 0e A: [Es gibt eine leere Klausel ~~ unerfiillbar]
return unsatisfiable
else if A =0: [keine Klauseln iibrig ~~ Belegung [ erfiillt die Formel]
return /
else if there exists a unit clause {v} or {=v} in A: [Unit Propagation]
Let v be such a variable, d the truth value that satisfies the clause.
A" = simplify(A, v, d)
return DPLL(V, A’/ U {v — d})
else: [Splitting Rule]
Select some variable v which occurs in A.
for each d € {F, T} in some order:
A" = simplify(A, v, d)
I':= DPLL(V, A", 1 U {v — d})
if I’ # unsatisfiable
return //
return unsatisfiable
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Der DPLL-Algorithmus: simplify

function simplify(A, v, d)

Let ¢ be the literal on v that is satisfied by v — d.
Let 7 be the complementary (opposite) literal to £.
A'={C|CeAst. l¢C}

A" :={C\{l}| CeA}

return A"
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}
1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:

2a. X —F
{yh{-Y}}
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{X Y EA{X Y EA{X ~Y})
2. Splitting Rule:
2a. X —F
{Yh{=-v}
3a. Unit Propagation: Y — T
{00}
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:
2a. X—F 2b. X —= T
{Yyh{-v}} {{=Y}}

3a. Unit Propagation: Y — T
{00}
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:

2a. X —F 2b. X — T
{YrL{=-Y}} {=Y}}
3a. Unit Propagation: Y — T 3b. Unit Propagation: Y — F

{0} {
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Beispiel (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

1. Unit Propagation: Z +— T
{{X’ Y}’ {_'X7 _'Y}’ {X’ _'Y}}
2. Splitting Rule:

2a. X —F 2b. X — T
{YrL{=-Y}} {=Y}}
3a. Unit Propagation: Y — T 3b. Unit Propagation: Y — F

{0} {
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Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}
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Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
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Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{W, =X, =Y} {X}1L{Y}}
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Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{{W, =X, =Y} {X}{Y}}
2. Unit Propagation: X — T

{w, =Y} {Y}}
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Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{{W’ —X, _‘Y}7 {X}7 {Y}}

2. Unit Propagation: X — T
{W, =Y} Y}

3. Unit Propagation: Y — T

{w}}



Systematische Suche: DPLL
000000e0000

Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{{W’ —X, _‘Y}7 {X}7 {Y}}

2. Unit Propagation: X — T
{W, =Y} Y}

3. Unit Propagation: Y — T
{w}}

4. Unit Propagation: W — T

{
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Beispiel (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

1. Unit Propagation: Z — T
{{W’ —X, _‘Y}7 {X}7 {Y}}

2. Unit Propagation: X — T
{W, =Y} Y}

3. Unit Propagation: Y — T
{w}}

4. Unit Propagation: W +— T

{
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Eigenschaften von DPLL

o DPLL ist korrekt und vollstandig
@ DPLL erzeugt ein Modell, falls eines existiert

o Manche Variablen werden evtl. in der Losung | nicht belegt;
deren Werte kénnen dann beliebig gewahlt werden.

o Zeitaufwand im Allgemeinen exponentiell

~ gute Variablenordnungen in der Praxis wichtig;
ebenso zusatzliche Inferenzmethoden, v.a. clause learning

@ beste bekannte SAT-Algorithmen basieren auf DPLL
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Hornformeln

wichtiger Spezialfall: Hornformeln

Definition (Hornformel)

Eine Hornklausel ist eine Klausel
mit maximal einem positivem Literal, also von der Form

—x1 V-V ox, Vy oder —-xg V- Vooxg

(Der Fall n =0 ist erlaubt.)

Eine Hornformel ist eine aussagenlogische Formel
in konjunktiver Normalform, die nur aus Hornklauseln besteht.

~ Grundlage von Logikprogrammierung (z.B. PROLOG)
und deduktiven Datenbanken
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DPLL auf Hornformeln

Satz (DPLL auf Hornformeln)

Wenn die Eingabeformel ¢ eine Hornformel ist, dann ist
der Zeitaufwand von DPLL polynomiell in der Lange von .

Beweis.

| A

Eigenschaften:

1. Wenn A eine Hornformel ist, dann ist auch simplify(A, v, d)
eine Hornformel. (\Warum?)

~~ alle wahrend der Suche von DPLL betrachteten Formeln
sind Hornformeln, wenn die Eingabe es ist
2. Jede Hornformel ohne leere oder Einheitsklauseln ist erfiillbar:

o alle solchen Klauseln enthalten mindestens zwei Literale
o da Horn: mindestens eines davon negativ
e Zuweisung F an alle Variablen erfiillt die Formel
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DPLL auf Hornformeln (Fortsetzung)

Beweis (Fortsetzung).
3. Aus 2. folgt:

e immer, wenn die Splitting Rule angewandt wird,
ist die aktuelle Formel erfiillbar, und

e immer, wenn dabei eine falsche Entscheidung getroffen wird,
wird dies sofort (d. h. nur durch Unit-Propagation-Schritte
und Herleiten einer leeren Klausel) erkannt.

4. Deshalb kann der erzeugte Suchbaum fiir n Variablen
nur maximal n viele Knoten enthalten, in denen
die Splitting Rule angewandt wird (und der Baum verzweigt).

5. Damit ist der Suchbaum nur polynomiell gross
und folglich die Gesamtlaufzeit polynomiell.
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Lokale Suche fiir SAT

@ Neben systematischen gibt es auch erfolgreiche
lokale Suchverfahren fiir SAT.

@ Diese sind im Normalfall nicht vollstindig und kdnnen
insbesondere nicht die Unerfiillbarkeit einer Formel zeigen.

o Oft ist dies aber verschmerzbar, wenn man dafiir fiir
schwierigere Probleme erfiillende Belegungen finden kann.

@ Insgesamt sind DPLL-basierte systematische Verfahren
allerdings in den letzten Jahren erfolgreicher.
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Lokale Suche fiir SAT: Ideen

Lokale Suchverfahren sind fiir SAT direkt anwendbar:
e Zustande: (vollstandige) Belegungen
@ Zielzustande: erfiillende Belegungen
@ Suchnachbarschaft: dndere Belegung einer Variable

@ Heuristiken: je nach Algorithmus;
z.B. Anzahl unerfiillter Klauseln
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GSAT (Greedy SAT): Pseudo-Code

Hilfsfunktionen:
@ violated(A, /): Anzahl Klauseln in A, die / nicht erfiillt

e flip(/, v): Die Belegung, die aus / entsteht,
wenn man die Belegung der Aussagevariable v dndert

function GSAT(A):

repeat max-tries times:
| ;== a random truth assignment
repeat max-flips times:
if | EA:
return /
Vigreedy = the set of variables v occurring in A
for which violated(A, flip(/, v)) is minimal
randomly select v € Vgreedy
I :=Alip(/, v)
return no solution found
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GSAT: Diskussion

GSAT hat iibliche Merkmale von lokalen Suchverfahren:
@ Hill-Climbing
e Zufall (allerdings relativ wenig!)
@ Neustarts

empirisch wird viel Zeit auf Plateaus verbracht:

60 T T
50+
401 il
#30%‘ -

unsat

T T
100 var

205 1
10 -3 4
‘—_‘\_|_\ 1 1

0 1 T T
0 50 100 150 200,230 300 350 400 450 500
# flips
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Walksat: Pseudo-Code

lost(A, I, v): #Klauseln in A, die | erfiillt, aber flip(/, v) nicht

function Walksat(A):

repeat max-tries times:
| := a random truth assignment
repeat max-flips times:
if | EA:
return /
C := randomly chosen unsatisfied clause in A
if there is a variable v in C with lost(A,/,v) = 0:
Vihoices := all such variables
else with probability poise:
Vehoices := all variables occurring in C
else:
Vihoices := Vvariables v in C that minimize lost(A, /, v)
randomly select v € Vipoices
I :=flip(/, v)
return no solution found )
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Walksat vs. GSAT

Vergleich GSAT vs. Walksat:

@ sehr viel mehr Zufall in Walksat
durch zufdllige Wahl der betrachteten Klausel

@ auch ,unintuitive” Schritte, die die Zahl der verletzten
Klauseln erst mal erhohen, sind bei Walksat meistens moglich

~ geringere Gefahr, in lokalen Minima stecken zu bleiben
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Wie schwierig ist SAT?
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Wie schwierig ist SAT in der Praxis?

@ SAT ist NP-vollstandig

~ Algorithmen wie DPLL benétigen im schlechtesten Fall
exponentielle Zeit

@ Wie sieht es im Durchschnitt aus?

@ hingt davon ab, iiber welche Probleminstanzen
der Durchschnitt gebildet wird
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SAT: polynomielle durchschnittliche Laufzeit

Gute Nachrichten (Goldberg 1979)

Konstruierte zufallige KNF-Formeln mit n Variablen
und k Klauseln wie folgt:

In jeder Klausel taucht jede Variable

@ mit Wahrscheinlichkeit 3 positiv,

W= W=

e mit Wahrscheinlichkeit 3 negativ,

e mit Wahrscheinlichkeit z gar nicht auf.

W=

Dann ist die Laufzeit von DPLL polynomiell in n und k.

~> leider kein sehr realistisches Modell fiir praktisch interessante
KNF-Formeln (fast alle Zufallsformeln erfiillbar)
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Phaseniibergange

Wie finden wir interessante zufallige Probleme?

Vermutung von Cheeseman et al.:

Cheeseman et al., IJCAI 1991

Alle NP-vollstandigen Probleme haben mindestens einen
Grossenparameter, fiir den die schwierigen Probleminstanzen
in der N&dhe eines kritischen Werts fiir diesen Parameter liegen.

Dieser so genannte Phaseniibergang trennt zwei Problemregionen,
z.B. eine zu stark eingeschrinkte (over-constrained)
von einer zu schwach eingeschrankten (under-constrained).

~> bestatigt z. B. fiir Graphfarbung, Hamilton-Pfade und SAT
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Phaseniibergange fiir 3-SAT

Problemmodell von Mitchell et al., AAAI 1992
o feste Klauselldnge 3

@ wabhle in jeder Klausel die Variablen zufallig

@ Literale sind mit Wahrscheinlichkeit % positiv bzw. negativ

kritischer Parameter: Anz. Klauseln geteilt durch Anz. Variablen
Phaseniibergang bei Verhiltnis von ca. 4.3
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Phaseniibergang bei DPLL

DPLL zeigt hohe Laufzeit in der Ndhe des Phaseniibergangs:

4000
50 Var. Formeln ——
3500
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2000
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1000

Rekursive DP-Aufrute (Median)

2 3 4 5 6 7
Klauseln/Variable
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Phaseniibergang: intuitive Erklarung

@ Wenn es sehr viele Klauseln gibt,
das Problem daher mit hoher Wahrscheinlichkeit unl6sbar ist,
wird das schnell durch Unit-Propagation nachgewiesen.

@ Wenn es sehr wenige Klauseln gibt,
gibt es sehr viele erfiillende Belegungen,
und es ist leicht, eine zu finden.

@ Nahe des Phaseniibergangs gibt es viele , Fast-L6sungen®,
die vom Suchalgorithmen verfolgt werden miissen.
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Stand der Wissenschaft

@ SAT-Forschung allgemein:
~+ http://www.satlive.org/

@ SAT-Konferenzen seit 1996; seit 2000 jedes Jahr
~+ http://www.satisfiability.org/

o Wettbewerbe fiir SAT-Algorithmen seit 1992
~ http://www.satcompetition.org/

o grosste Instanzen haben mehr als 1'000'000 Literale
o verschiedene Disziplinen (z. B. SAT vs. SAT+UNSAT,;
industrielle vs. zufallige Instanzen)


http://www.satlive.org/
http://www.satisfiability.org/
http://www.satcompetition.org/
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Weiterfihrende Themen

DPLL-basierte SAT-Algorithmen:
o effiziente Implementierungstechniken
@ gute Variablenordnungen

@ clause learning

lokale Suchalgorithmen:
o effiziente Implementierungstechniken

e adaptive Suchverfahren (,,schwierige” Klauseln
werden mit der Zeit erkannt und priorisiert)
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