Grundlagen der Kunstlichen Intelligenz

10. Constraint-Satisfaction-Probleme: Algorithmen

Malte Helmert

Universitat Basel

12. April 2013

Constraint-Satisfaction-Probleme: Uberblick

Kapiteliiberblick Constraint-Satisfaction-Probleme:
e Einfithrung (~~ Kapitel 9)
@ Algorithmen (~ dieses Kapitel)
@ Problemstruktur (~ Kapitel 11)

CSP-Algorithmen

In diesem Kapitel betrachten wir Lésungsalgorithmen

fur Constraint-Netze.

Grundkonzepte:
@ Suche: systematisches Ausprobieren von partiellen Belegungen
@ Backtracking: Verwerfen inkonsistenter partieller Belegungen

@ Inferenz: Herleiten scharferer dquivalenter Constraints,
um Suchraum zu verkleinern (Backtracking friiher méglich)

Suche vs. Inferenz

Trade-off Suche vs. Inferenz
Je komplexer die Inferenz,
@ desto weniger Suchknoten miissen durchsucht werden und

@ desto mehr Zeitaufwand wird pro Suchknoten bendtigt

Wir beginnen mit dem Extremfall ohne Inferenz:
naives Backtracking

Naives Backtracking

Naives Backtracking i ind Wertordnungen
fe] Jolelelele)

Naives Backtracking (= ohne Inferenz)

function NaiveBacktracking(C, o):
(V,dom,(Ry)) :=C

if « is inconsistent with C:
return inconsistent

if o is a total assignment:
return o

select some variable v for which « is not defined

for each d € dom(v) in some order:
o =aU{v—d}
o := NaiveBacktracking(C, &)
if o’ # inconsistent:
return o
return inconsistent

Eingabe: Constraint-Netz C und partielle Belegung o von C
(erster Aufruf: die leere Belegung o = ()

Ergebnis: Losung von C oder inconsistent

Naives Backtracking
fe]e] Yololele}

Ist das ein neuer Algorithmus?

Wir haben diesen Algorithmus schon gesehen:
Backtracking entspricht Tiefensuche (vgl. Kapitel 4)
mit folgendem Zustandsraum:

Zustande: konsistente partielle Belegungen
Anfangszustand: leere Belegung ()

Zielzustande: konsistente totale Belegungen

Aktionen: assign, 4 weist Variable v Wert d € dom(v) zu

Kosten: alle 0 (alle Lésungen gleich gut)

Transitionen:

o fiir jede nicht-totale Belegung o wahle Variable

v = selected(a), die in « unbelegt ist
assign, 4

o Transition « ——= aU {v > d} fiir alle d € dom(v)

Naives Backtracking
[e]e]eY Tolele}

Warum Tiefensuche?

Tiefensuche ist fiir CSPs besonders geeignet:
e Pfadlange beschrankt (durch Anzahl Variablen)
@ Alle Lésungen in derselben Tiefe (in unterster Suchebene)

@ Zustandsraum gerichteter Baum,
Anfangszustand ist Wurzel ~~ keine Duplikate (Warum?)

Somit tritt keiner der fiir Tiefensuche problematischen Fille auf.

Naives Backtracking
0000800

Naives Backtracking: Beispiel

Betrachte das Constraint-Netz fiir folgendes
Graphfarbungsproblem:

Vi

v7
Vs

Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, v7, va, vs, V6, v3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, v7, va, vs, V6, v3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

! b./.

Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, v7, va, vs, V6, v3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, v7, va, vs, V6, v3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, v7, va, vs, V6, v3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, v7, va, vs, V6, v3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, v7, va, vs, V6, v3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, v7, va, vs, V6, v3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, v7, va, vs, V6, v3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, v7, va, vs, V6, v3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, v7, va, vs, V6, v3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, v7, va, vs, V6, v3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

Naives Backtracking
00000e0

Naives Backtracking: Beispiel

Suchbaum fiir naives Backtracking mit
o fester Variablenreihenfolge vy, v7, va, vs, V6, v3, V2
@ alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

Naives Backtracking
000000e

Naives Backtracking: Diskussion

@ Naives Backtracking muss oft dhnliche Suchpfade
(partielle Belegungen gleich bis auf wenige Variablen)
erschopfend durchsuchen.

o , Kritische" Variablen nicht erkannt, daher (zu) spat belegt
@ Entscheidungen, die spater zwangslaufig

zu Constraint-Verletzungen fiihren, werden erst erkannt,
wenn alle beteiligten Variablen belegt wurden

~> mehr Intelligenz durch Fokus auf kritischen Entscheidungen
und Inferenz von Konsequenzen der bisherigen Entscheidungen

Variablen- und Wertordnungen

Variablen- und Wertordnungen
0®0000

Naives Backtracking

function NaiveBacktracking(C

(V,dom,(Ry)) :=C
if o is inconsistent with C:
return inconsistent

if « is a total assignment:
return o

select some variable v for which « is not defined

for each d € dom(v) in some order:
o =aU{v—d}
o' := NaiveBacktracking(C, o)
if o' # inconsistent:
return o
return inconsistent

Variablen- und Wertordnungen
00@000

Variablen- und Wertordnungen

Variablenordnung:
o Backtracking lasst offen, in welcher Reihenfolge
Variablen belegt werden
@ beeinflusst oft dramatisch die Grosse des Suchraums
und damit die Performance der Suche
~~ Beispiel: Ubungsaufgaben

Wertordnung:

o Backtracking lasst ebenfalls offen, in welcher Reihenfolge
die Werte der ausgewahlten Variable v betrachtet werden

@ nicht ganz so wichtig, da in TeilbAumen ohne Ldsung
nicht von Belang (Warum nicht?)

@ wenn Losung im Teilbaum existiert, sollte
nach Moglichkeit zunachst Wert ausgewahlt werden,
der zur Losung fiihrt (Warum?)

Variablen- und Wertordnungen
000®00

Statische vs. dynamische Ordnungen

Wir unterscheiden:
@ statische Ordnungen (im Voraus festgelegt)

e dynamische Ordnungen (ausgewahlte Variable/
ausgewahlte Wertordnung hangt vom Suchzustand ab)

Vergleich:

@ dynamische Ordnungen offensichtlich machtiger

@ statische Ordnungen verursachen dafiir keinen Overhead
wahrend der Suche

Die folgenden Ordnungen kdnnen statisch vorgenommen werden,
sind aber effektiver, wenn man sie mit Inferenz (~~ spéter)
kombiniert und dynamisch auswertet.

Variablen- und Wertordnungen
0000@0

Variablenordnungen

Zwei haufige Kriterien zur Variablenordnung:
@ Minimum Remaining Values: wiahle zuerst Variablen aus,
deren Wertebereich moglichst klein ist

o Intuition: wenige Teilbdume ~~ kleiner Baum
o Extremfall: nur ein Wert ~» erzwungene Belegung

@ Most Constraining Variable: wahle zuerst Variablen aus,
die an moglichst vielen nichttrivialen Constraints beteiligt sind

e Intuition: Constraints moglichst friih testen
~ friih Inkonsistenzen erkennen ~~ kleiner Baum
Kombination: verwende Minimum-Remaining-Values-Kriterium,
dann Most-Constraining-Variable-Kriterium zum Tie-Breaking

Variablen- und Wertordnungen
00000e

Wertordnungen

Definition (Konflikt)

Sei C = (V,dom, (Ry/)) ein Constraint-Netz.
Fiir Variablen v # v/ und Werte d € dom(v), d’ € dom(v') steht
v — d im Konflikt mit v/ — d’, falls (d, d’) ¢ R,,.

Kriterium zur Wertordnung fiir partielle Belegung «
und ausgewahlte Variable v:

e Minimum Conflicts: Bevorzuge Werte d € dom(v),
fiir die v — d an moglichst wenigen Konflikten
mit in « unbelegten Variablen beteiligt ist.

Inferenz

Inferenz
0®000000

Inferenz

Herleiten zusatzlicher Constraints (hier: unar oder binér),
die aus den bekannten Constraints logisch folgen,
d.h. in allen Lésungen erfiillt sind.

Beispiel: Constraint-Netz mit Variablen vy, v», v3
mit Wertebereich {1,2,3} und Constraints v < v» und v» < v3.

Wir kdnnen beispielsweise folgern:
@ v2 kann nicht 3 sein (neuer undrer Constraint
= Einschrankung des Wertebereichs von v»)
@ v; < v3 (neuer bindrer Constraint
= trivialer Constraint verscharft)
° R, ={(1,2),(1,3),(2,3)} kann verscharft werden
zu {(1,2)} (verscharfter bindrer Constraint)

Inferenz
00®00000

Nutzen von Inferenz

@ Formal ist Inferenz Ersetzen des gegebenen Constraint-Netzes
durch ein schirferes dquivalentes Netz.

@ Nutzen: kleinerer Suchbaum
o dem Nutzen steht der Berechnungsaufwand gegeniiber

Inferenz
000®0000

Wo Inferenz verwenden?

Unterschiedliche Verwendungsmoglichkeiten fiir Inferenz:
@ einmalig als Vorverarbeitung vor der Suche

@ mit Suche kombiniert: bei jedem rekursiven Aufruf
der Backtracking-Prozedur

o bereits belegte Variablen v — d kdnnen wie dom(v) = {d}
verstanden werden ~» mehr Schlussfolgerungen méglich
o bei Backtracking miissen Verschiarfungen durch Inferenz
zurlickgenommen werden, da sie die gegebene Belegung
als Voraussetzung hatten
~~ machtig, aber eventuell teuer

ind Wertordnungen Inferenz
00000000

Backtracking mit Inferenz

function BacktrackingWithInference(C, «):

if « is inconsistent with C:
return inconsistent
if is a total assignment:
return o
C' = (V,dom’,(R.,)) := copy of C
apply inference to C’
if dom’(v) # 0 for all variables v:
select some variable v for which « is not defined
for each d € copy of dom’(v) in some order:
o =aU{v— d}
dom’(v) := {d}
o' := BacktrackingWithInference(C’, o)
if o' # inconsistent:
return o
return inconsistent

ind Wertordnungen Inferenz
00000000

Backtracking mit Inferenz

function BacktrackingWithInference(C, «):

if « is inconsistent with C:
return inconsistent
if is a total assignment:
return o
C' :=(V,dom’,(R!,)) := copy of C
apply inference to C’
if dom’(v) # () for all variables v:
select some variable v for which « is not defined
for each d € copy of dom’(v) in some order:
o =aU{v— d}
dom’(v) := {d}
o' := BacktrackingWithInference(C', o)
if o' # inconsistent:

return o’
return inconsistent

Inferenz
00000e®00

Backtracking mit Inferenz: Diskussion

@ inference ist ein Platzhalter:
verschiedene Inferenzmethoden konnen eingesetzt werden
@ bei vielen Inferenzmethoden wird der anfangliche Test
auf Inkonsistenz von « liiberfliissig
e kein inkonsistentes v kann erreicht werden,
da konfligierende Werte durch Inferenz
aus den Wertebereichen gestrichen werden
@ Inferenzmethode kann Unldsbarkeit (gegeben «) erkennen
und durch Leeren eines Wertebereichs signalisieren

o effizient implementierte Inferenz oft inkrementell:
zuletzt belegtes Paar v — d wird mitgeteilt und verwendet,
um die Berechnung zu beschleunigen

Inferenz
000000e0

Forward Checking

Wir beginnen mit einer sehr einfachen Inferenz-Methode:

Forward Checking

Inferenz: Entferne alle Variablen-/Werte-Paare aus dom’,
die mit bereits belegten Paaren im Konflikt stehen.

~» Definition von Konflikt im vorigen Abschnitt

Inkrementelle Berechnung:

@ Immer, wenn v — d zur Belegung hinzugefiigt wird,
entferne alle mit v — d im Konflikt stehenden Paare.

Inferenz
0000000e

Forward Checking: Diskussion

Eigenschaften von Forward Checking:
o korrekte Inferenzmethode (erhilt Aquivalenz)

@ beeinflusst Wertebereiche (= unére Constraints),
aber nicht die bindren Constraints

@ macht Konsistenztest am Anfang der Backtracking-Prozedur
tiberfliissig (Warum?)

o billige, aber dennoch oft niitzliche Inferenz-Methode

~~ selten eine gute ldee, nicht mindestens
Forward Checking zu verwenden

Im Folgenden betrachten wir machtigere Inferenzmethoden.

Kantenkonsistenz

Kantenkonsistenz
0®00000000000

Kantenkonsistenz: Definition

Definition (kantenkonsistent)
Sei C = (V,dom, (R,,)) ein Constraint-Netz.

(a) Eine Variable v € V ist kantenkonsistent in Bezug auf
eine andere Variable v/ € V, wenn fiir jeden Wert d € dom(v)
ein Wert d’ € dom(v’) mit (d,d’) € R, existiert.
(b) Das Constraint-Netz C ist kantenkonsistent,
wenn jede Variable v € V' kantenkonsistent
in Bezug auf jede andere Variable v/ € V ist.

Anmerkungen:
@ Definition fiir Variablenpaare ist asymmetrisch

e v immer kantenkonsistent in Bezug auf v/,
wenn Constraint zwischen v und v/ trivial ist

Kantenkonsistenz
0O®0000000000

Kantenkonsistenz: Beispiel

Betrachte ein Constraint-Netz mit Variablen v; und v»,
Wertebereichen dom(v;) = dom(w) = {1,2,3}
und dem durch v; < v» beschriebenen Constraint.

%1 V2

Kantenkonsistenz von vy in Bezug auf v
und von v, in Bezug auf vy ist verletzt.

Kantenkonsistenz
0008000000000

Herstellen von Kantenkonsistenz

@ Herstellen von Kantenkonsistenz, d. h. Entfernen von Werten
aus dom(v), die die Kantenkonsistenz von v in Bezug auf v/
verletzen, ist eine korrekte Inferenzmethode. (Warum?)

e machtiger als Forward Checking (Warum?)

@ Im folgenden betrachten wir Algorithmen
zum Herstellen von Kantenkonsistenz.

Kantenkonsistenz
0000®00000000

Verarbeitung eines einzelnen Variablenpaars: revise

function revise(C, v, v'):
(V,dom, (Ru)) :=C
for each d € dom(v):
if there is no d’ € dom(v') with (d,d’) € R,,:
remove d from dom(v)

Eingabe: Constraint-Netz C und zwei Variablen v, v/ von C

Effekt: Macht v kantenkonsistent in Bezug auf v'.
Alle verletzenden Werte werden aus dom(v) entfernt.

Zeitaufwand: O(k?), wenn k maximale Wertebereichsgrésse
(geeignete Kodierung von (R,,) und dom vorausgesetzt)

Kantenkonsistenz
00000®0000000

Beispiel: revise

Kantenkonsistenz
00000®0000000

Beispiel: revise

Kantenkonsistenz
00000®0000000

Beispiel: revise

Kantenkonsistenz
00000®0000000

Beispiel: revise

Kantenkonsistenz
00000®0000000

Beispiel: revise

Kantenkonsistenz
000000®000000

Herstellen von Kantenkonsistenz: AC-1

function AC-1(C):
(V, dom, (Ru,)) =C

repeat
for each nontrivial constraint R, :
revise(C, u, v)
revise(C, v, u)
until no domain has changed in this iteration

Eingabe: Constraint-Netz C
Effekt: transformiert C in dquivalentes kantenkonsistentes Netz
Zeitaufwand: 7

Kantenkonsistenz
000000®000000

Herstellen von Kantenkonsistenz: AC-1

function AC-1(C):
(V, dom, (Ru,)) =C

repeat
for each nontrivial constraint R, :
revise(C, u, v)
revise(C, v, u)
until no domain has changed in this iteration

Eingabe: Constraint-Netz C
Effekt: transformiert C in dquivalentes kantenkonsistentes Netz

Zeitaufwand: O(n- e - k%), wenn n Variablen, e nichttriviale
Constraints und k maximale Wertebereichsgrosse

Kantenkonsistenz
0000000800000

AC-1: Diskussion

o AC-1 erfiillt seine Aufgabe, ist aber ineffizient.

@ Oft werden Variablenpaare wieder und wieder liberpriift,
deren Wertebereiche sich nicht gedndert haben.

o Diese Uberpriifungen kdnnen eingespart werden.
~ effizienterer Algorithmus: AC-3

und Wertordnungen fe Kantenkonsistenz
0000000080000

Herstellen von Kantenkonsistenz: AC-3

Idee: merke potenziell inkonsistente Variablenpaare in Queue

function AC-3(C):

(V,dom, (Ru)) :=C
queue :=)
for each nontrivial constraint R, :
insert (u, v) into queue
insert (v, u) into queue
while queue # (:
remove any element (u, v) from queue
revise(C, u, v)
if dom(u) changed in the call to revise:
for each w € V' \ {u, v} where R, is nontrivial:
insert (w, u) into queue

Kantenkonsistenz
000000000e000

AC-3: Diskussion

@ queue kann eine beliebige Datenstruktur sein,
die Einfiigen und Entfernen erlaubt
(Reihenfolge des Entfernens ist fiir Ergebnis egal)
~ effizient z. B. ein Stack
@ AC-3 hat denselben Effekt wie AC-1:
es stellt Kantenkonsistenz her

@ Beweisidee: Invariante der while-Schleife:
Wenn (u, v) ¢ queue, dann u kantenkonsistent in Bezug auf v

Kantenkonsistenz
0000000000800

AC-3: Zeitaufwand

Satz (Zeitaufwand von AC-3)

Sei C ein Constraint-Netz mit e nichttrivialen Constraints und
maximaler Wertebereichsgrosse k.
Dann lduft AC-3 in Zeit O(e - k3).

Kantenkonsistenz
0000000000080

AC-3: Zeitaufwand (Beweis)

Beweis.

Betrachte einen einzelnen nichttrivialen Constraint.

Kantenkonsistenz
0000000000080

AC-3: Zeitaufwand (Beweis)

Beweis.

Betrachte einen einzelnen nichttrivialen Constraint.

Jedes Mal, wenn er in die Queue eingefiigt wird (ausser beim
ersten Mal), wurde zuvor der Wertebereich einer der beteiligten
Variablen reduziert.

Kantenkonsistenz
0000000000080

AC-3: Zeitaufwand (Beweis)

Beweis.

Betrachte einen einzelnen nichttrivialen Constraint.

Jedes Mal, wenn er in die Queue eingefiigt wird (ausser beim
ersten Mal), wurde zuvor der Wertebereich einer der beteiligten
Variablen reduziert.

Das kann hochstens 2k mal passieren.

und Wertordnungen fe Kantenkonsistenz

AC-3: Zeitaufwand (Beweis)

00000000000 e0

Beweis.

Betrachte einen einzelnen nichttrivialen Constraint.

Jedes Mal, wenn er in die Queue eingefiigt wird (ausser beim
ersten Mal), wurde zuvor der Wertebereich einer der beteiligten
Variablen reduziert.

Das kann hochstens 2k mal passieren.

Damit wird jeder Constraint hochstens 2k + 1 = O(k) mal

in die Queue eingefiigt und es gibt insgesamt héchstens O(e - k)
Einfligeoperationen.

Kantenkonsistenz
0000000000080

AC-3: Zeitaufwand (Beweis)

Beweis.

Betrachte einen einzelnen nichttrivialen Constraint.

Jedes Mal, wenn er in die Queue eingefiigt wird (ausser beim
ersten Mal), wurde zuvor der Wertebereich einer der beteiligten
Variablen reduziert.

Das kann hochstens 2k mal passieren.

Damit wird jeder Constraint hochstens 2k + 1 = O(k) mal

in die Queue eingefiigt und es gibt insgesamt héchstens O(e - k)
Einfligeoperationen.

Dies begrenzt die Zahl der Iterationen der while-Schleife

auf O(ek), weswegen die revise-Aufrufe hochstens Zeit

O(ek) - O(k?) = O(ek3) bendtigen. O

Kantenkonsistenz
000000000000e

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen vq, v, v3
mit dom(v;) = {2,4} und dom(vz) = dom(v3) = {2,5}
sowie den Constraints v3|v; und v3|va (“teilt”).

V3 @ Queue
Vi, V3)

V2, v3)
V3, V2)

(
(v3,v1)
(
(

Kantenkonsistenz
000000000000e

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen vq, v, v3
mit dom(v;) = {2,4} und dom(vz) = dom(v3) = {2,5}
sowie den Constraints v3|v; und v3|va (“teilt”).

V3 @ Queue

Kantenkonsistenz
000000000000e

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v, v, v3
mit dom(v;) = {2,4} und dom(vz) = dom(v3) = {2,5}
sowie den Constraints v3|v; und v3|va (“teilt”).

V3 @ Queue
(V2, V3)

Kantenkonsistenz
000000000000e

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v, v, v3
mit dom(v;) = {2,4} und dom(vz) = dom(v3) = {2,5}
sowie den Constraints v3|v; und v3|va (“teilt”).

V3 @ Queue
(V1, V3)
2(24) ()

(V3a Vl)

Kantenkonsistenz
000000000000e

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v, v, v3
mit dom(v;) = {2,4} und dom(vz) = dom(v3) = {2,5}
sowie den Constraints v3|v; und v3|va (“teilt”).

V3 a Queue
(V1, V3)
(24) ()

Kantenkonsistenz
000000000000e

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v, v, v3
mit dom(v;) = {2,4} und dom(vz) = dom(v3) = {2,5}
sowie den Constraints v3|v; und v3|va (“teilt”).

V3 a Queue
(V1, V3)
(24) ()

(v2, v3)

Kantenkonsistenz
000000000000e

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v, v, v3
mit dom(v;) = {2,4} und dom(vz) = dom(v3) = {2,5}
sowie den Constraints v3|v; und v3|va (“teilt”).

V3 e Queue
(V1, V3)
2(24) (22)

(v2, v3)

Kantenkonsistenz
000000000000e

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v, v, v3
mit dom(v;) = {2,4} und dom(vz) = dom(v3) = {2,5}
sowie den Constraints v3|v; und v3|va (“teilt”).

V3 a Queue
(V1, V3)
OO

Kantenkonsistenz
000000000000e

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v, v, v3
mit dom(v;) = {2,4} und dom(vz) = dom(v3) = {2,5}
sowie den Constraints v3|v; und v3|va (“teilt”).

V3 e Queue
(vi,v3)
IONOL

Kantenkonsistenz
000000000000e

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v, v, v3
mit dom(v;) = {2,4} und dom(vz) = dom(v3) = {2,5}
sowie den Constraints v3|v; und v3|va (“teilt”).

V3 e Queue

Pfadkonsistenz

Pfadkonsistenz
0®0000000

Jenseits von Kantenkonsistenz: Pfadkonsistenz

Grundidee der Kantenkonsistenz:

@ zu jeder Belegung einer Variable u muss es
eine passende Belegung jeder anderen Variable v geben

@ ansonsten werden Werte von u,
die nicht auf v erweiterbar sind, verboten

~ neuer unarer Constraint auf u

Idee lasst sich auf drei Variablen erweitern (Pfadkonsistenz):

@ zu jeder gemeinsamen Belegung von Variablen u, v muss es
eine passende Belegung jeder anderen Variablen w geben

@ ansonsten werden Wertepaare fiir u und v,
die nicht auf w erweiterbar sind, verboten

~~ neuer bindrer Constraint auf v und v

Pfadkonsistenz
000000000

Jenseits von Kantenkonsistenz: /-Konsistenz

Generelles Konzept der /-Konsistenz fiir i > 2:

@ zu jeder gemeinsamen Belegung von vi,...,vj_1 muss es
eine passende Belegung jeder anderen Variable v; geben

@ ansonsten werden Wertetupel fiir v1,...,v;_1,
die nicht auf v; erweiterbar sind, verboten

~~ neuer (i — 1)-stelliger Constraint auf vi,...,vj_1
@ 2-Konsistenz = Kantenkonsistenz
@ 3-Konsistenz = Pfadkonsistenz (*)

Wir betrachten allgemeine i-Konsistenz nicht naher,
zumal héhere Werte als i = 3 selten verwendet werden
und wir uns hier auf héchstens bindre Constraints beschranken.

(*) tibliche Definitionen von 3-Konsistenz vs. Pfadkonsistenz unterscheiden
sich, wenn ternére (dreistellige) Constraints erlaubt sind

antenkonsiste Pfadkonsistenz
> 000®00000

Pfadkonsistenz: Definition

Definition (pfadkonsistent)
Sei C = (V,dom, (Ry/)) ein Constraint-Netz.

(a) Zwei verschiedene Variablen v, v’ € V sind pfadkonsistent
in Bezug auf eine dritte Variable v/ € V/, wenn fiir beliebige
Werte d € dom(v), d" € dom(v') mit (d,d’) € R,/
immer ein Wert d” € dom(v") mit (d,d”) € R,,»
und (d’,d"”) € R, existiert.

(b) Das Constraint-Netz C ist pfadkonsistent,
wenn fiir drei verschiedene Variablen v, v/, v/ immer gilt,
dass v und v/ pfadkonsistent in Bezug auf v” sind.

Pfadkonsistenz
000000000

Pfadkonsistenz: Anmerkungen

Anmerkungen:

@ Selbst wenn Constraint R, trivial ist, kann Pfadkonsistenz
nichttriviale Constraints zwischen v und v/ inferieren.

@ Wenn das Netz kantenkonsistent ist,
kann Pfadkonsistenz nur dann zu neuer Information fiihren,
wenn sowohl R, als auch R, nichttrivial sind.

@ Name , Pfadkonsistenz*:
Pfad v — v/ — V' fiihrt zu neuer Information iiber v — v/

Pfadkonsistenz
00000e000

Pfadkonsistenz: Beispiel

Vi

red

blue
7£
red
7& blue
Vo V3

kantenkonsistent, aber nicht pfadkonsistent

Pfadkonsistenz
000000800

Verarbeitung eines Variablentripels: revise-3

Analog zu revise fiir Kantenkonsistenz:

function revise-3(C, v, v/, v"):

(V,dom, (Ru)) :=C
for each (d,d') € R,
if there is no d” € dom(v") with (d,d”) € R,,»
and (dl, d”) € Ry
remove (d,d’) from R,

Eingabe: Constraint-Netz C und drei Variablen v, v/, v/ von C

Effekt: Macht v, v/ pfadkonsistent in Bezug auf v”.
Alle verletzenden Paare werden aus R,,s entfernt.

Zeitaufwand: O(k3), wenn k maximale Wertebereichsgrosse

Pfadkonsistenz

0000000e0

Herstellen von Pfadkonsistenz: PC-2

Analog zu AC-3 fiir Kantenkonsistenz:

function PC-2(C):

(V,dom, (Ry)) :=C
queue == ()
for each set of two variables {u, v}:
for each w € V' \ {u, v}:
insert (u, v, w) into queue

while queue #
remove any element (u, v, w) from queue
revise(C, u, v, w)
if R,, changed in the call to revise:
for each w' € V' \ {u, v}:
insert (W', u, v) into queue
insert (w/, v, u) into queue

Pfadkonsistenz
©00000000e

PC-2: Diskussion

Die Aussagen zu AC-3 gelten analog.
@ PC-2 stellt Pfadkonsistenz her

@ Beweisidee: Invariante der while-Schleife:
Wenn (u, v, w) ¢ queue, dann u, v pfadkonsistent
in Bezug auf w

e mogliche Optimierung: (u, v, w) immer nur dann
in queue einfiigen, wenn R, und R, nichttrivial

o Laufzeit O(n3k®) fiir n Variablen und maximale
Wertebereichsgrosse k (\Warum?)

	Naives Backtracking
	Variablen- und Wertordnungen
	Inferenz
	Kantenkonsistenz
	Pfadkonsistenz

