
Grundlagen der Künstlichen Intelligenz
10. Constraint-Satisfaction-Probleme: Algorithmen

Malte Helmert

Universität Basel

12. April 2013

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Constraint-Satisfaction-Probleme: Überblick

Kapitelüberblick Constraint-Satisfaction-Probleme:

Einführung (Kapitel 9)

Algorithmen (dieses Kapitel)

Problemstruktur (Kapitel 11)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

CSP-Algorithmen

In diesem Kapitel betrachten wir Lösungsalgorithmen
für Constraint-Netze.

Grundkonzepte:

Suche: systematisches Ausprobieren von partiellen Belegungen

Backtracking: Verwerfen inkonsistenter partieller Belegungen

Inferenz: Herleiten schärferer äquivalenter Constraints,
um Suchraum zu verkleinern (Backtracking früher möglich)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Suche vs. Inferenz

Trade-off Suche vs. Inferenz

Je komplexer die Inferenz,

desto weniger Suchknoten müssen durchsucht werden und

desto mehr Zeitaufwand wird pro Suchknoten benötigt

Wir beginnen mit dem Extremfall ohne Inferenz:
naives Backtracking

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking (= ohne Inferenz)

function NaiveBacktracking(C, α):

〈V , dom, (Ruv)〉 := C
if α is inconsistent with C:

return inconsistent

if α is a total assignment:
return α

select some variable v for which α is not defined

for each d ∈ dom(v) in some order:
α′ := α ∪ {v 7→ d}
α′′ := NaiveBacktracking(C, α′)
if α′′ 6= inconsistent:

return α′′

return inconsistent

Eingabe: Constraint-Netz C und partielle Belegung α von C
(erster Aufruf: die leere Belegung α = ∅)
Ergebnis: Lösung von C oder inconsistent

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Ist das ein neuer Algorithmus?

Wir haben diesen Algorithmus schon gesehen:
Backtracking entspricht Tiefensuche (vgl. Kapitel 4)
mit folgendem Zustandsraum:

Zustände: konsistente partielle Belegungen

Anfangszustand: leere Belegung ∅
Zielzustände: konsistente totale Belegungen

Aktionen: assignv ,d weist Variable v Wert d ∈ dom(v) zu

Kosten: alle 0 (alle Lösungen gleich gut)

Transitionen:

für jede nicht-totale Belegung α wähle Variable
v = selected(α), die in α unbelegt ist

Transition α
assignv,d−−−−−→ α ∪ {v 7→ d} für alle d ∈ dom(v)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Warum Tiefensuche?

Tiefensuche ist für CSPs besonders geeignet:

Pfadlänge beschränkt (durch Anzahl Variablen)

Alle Lösungen in derselben Tiefe (in unterster Suchebene)

Zustandsraum gerichteter Baum,
Anfangszustand ist Wurzel keine Duplikate (Warum?)

Somit tritt keiner der für Tiefensuche problematischen Fälle auf.

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Betrachte das Constraint-Netz für folgendes
Graphfärbungsproblem:

b, g, r

v1

b, g

v2

b, r

v3 b, r

v4

b, g

v5

g, r, y

v6

b, r

v7

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Suchbaum für naives Backtracking mit

fester Variablenreihenfolge v1, v7, v4, v5, v6, v3, v2

alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Suchbaum für naives Backtracking mit

fester Variablenreihenfolge v1, v7, v4, v5, v6, v3, v2

alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Suchbaum für naives Backtracking mit

fester Variablenreihenfolge v1, v7, v4, v5, v6, v3, v2

alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Suchbaum für naives Backtracking mit

fester Variablenreihenfolge v1, v7, v4, v5, v6, v3, v2

alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Suchbaum für naives Backtracking mit

fester Variablenreihenfolge v1, v7, v4, v5, v6, v3, v2

alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Suchbaum für naives Backtracking mit

fester Variablenreihenfolge v1, v7, v4, v5, v6, v3, v2

alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Suchbaum für naives Backtracking mit

fester Variablenreihenfolge v1, v7, v4, v5, v6, v3, v2

alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Suchbaum für naives Backtracking mit

fester Variablenreihenfolge v1, v7, v4, v5, v6, v3, v2

alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Suchbaum für naives Backtracking mit

fester Variablenreihenfolge v1, v7, v4, v5, v6, v3, v2

alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Suchbaum für naives Backtracking mit

fester Variablenreihenfolge v1, v7, v4, v5, v6, v3, v2

alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Suchbaum für naives Backtracking mit

fester Variablenreihenfolge v1, v7, v4, v5, v6, v3, v2

alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Suchbaum für naives Backtracking mit

fester Variablenreihenfolge v1, v7, v4, v5, v6, v3, v2

alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Beispiel

Suchbaum für naives Backtracking mit

fester Variablenreihenfolge v1, v7, v4, v5, v6, v3, v2

alphabetischer Reihenfolge der Werte

(ohne inkonsistente Knoten; bei Zielknoten fortgesetzt)

v1

v7

v4

v5

v6

v3

v2

b

r

g r

b

b

r

g r

b

b

r

g

b r

r

b

b

r

g

b

r

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

b

r

g

b

r

g

r

r

b

y

r

b

r

b

g

r

b

b

y

b

b

r

b

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking: Diskussion

Naives Backtracking muss oft ähnliche Suchpfade
(partielle Belegungen gleich bis auf wenige Variablen)
erschöpfend durchsuchen.

”
Kritische“ Variablen nicht erkannt, daher (zu) spät belegt

Entscheidungen, die später zwangsläufig
zu Constraint-Verletzungen führen, werden erst erkannt,
wenn alle beteiligten Variablen belegt wurden

 mehr Intelligenz durch Fokus auf kritischen Entscheidungen
und Inferenz von Konsequenzen der bisherigen Entscheidungen

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Variablen- und Wertordnungen

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Naives Backtracking

function NaiveBacktracking(C, α):

〈V , dom, (Ruv)〉 := C
if α is inconsistent with C:

return inconsistent

if α is a total assignment:
return α

select some variable v for which α is not defined

for each d ∈ dom(v) in some order:
α′ := α ∪ {v 7→ d}
α′′ := NaiveBacktracking(C, α′)
if α′′ 6= inconsistent:

return α′′

return inconsistent

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Variablen- und Wertordnungen

Variablenordnung:

Backtracking lässt offen, in welcher Reihenfolge
Variablen belegt werden

beeinflusst oft dramatisch die Grösse des Suchraums
und damit die Performance der Suche
 Beispiel: Übungsaufgaben

Wertordnung:

Backtracking lässt ebenfalls offen, in welcher Reihenfolge
die Werte der ausgewählten Variable v betrachtet werden

nicht ganz so wichtig, da in Teilbäumen ohne Lösung
nicht von Belang (Warum nicht?)

wenn Lösung im Teilbaum existiert, sollte
nach Möglichkeit zunächst Wert ausgewählt werden,
der zur Lösung führt (Warum?)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Statische vs. dynamische Ordnungen

Wir unterscheiden:

statische Ordnungen (im Voraus festgelegt)

dynamische Ordnungen (ausgewählte Variable/
ausgewählte Wertordnung hängt vom Suchzustand ab)

Vergleich:

dynamische Ordnungen offensichtlich mächtiger

statische Ordnungen verursachen dafür keinen Overhead
während der Suche

Die folgenden Ordnungen können statisch vorgenommen werden,
sind aber effektiver, wenn man sie mit Inferenz (später)
kombiniert und dynamisch auswertet.

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Variablenordnungen

Zwei häufige Kriterien zur Variablenordnung:

Minimum Remaining Values: wähle zuerst Variablen aus,
deren Wertebereich möglichst klein ist

Intuition: wenige Teilbäume kleiner Baum
Extremfall: nur ein Wert erzwungene Belegung

Most Constraining Variable: wähle zuerst Variablen aus,
die an möglichst vielen nichttrivialen Constraints beteiligt sind

Intuition: Constraints möglichst früh testen
 früh Inkonsistenzen erkennen kleiner Baum

Kombination: verwende Minimum-Remaining-Values-Kriterium,
dann Most-Constraining-Variable-Kriterium zum Tie-Breaking

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Wertordnungen

Definition (Konflikt)

Sei C = 〈V , dom, (Ruv)〉 ein Constraint-Netz.
Für Variablen v 6= v ′ und Werte d ∈ dom(v), d ′ ∈ dom(v ′) steht
v 7→ d im Konflikt mit v ′ 7→ d ′, falls 〈d , d ′〉 /∈ Rvv ′ .

Kriterium zur Wertordnung für partielle Belegung α
und ausgewählte Variable v :

Minimum Conflicts: Bevorzuge Werte d ∈ dom(v),
für die v 7→ d an möglichst wenigen Konflikten
mit in α unbelegten Variablen beteiligt ist.

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Inferenz

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Inferenz

Inferenz

Herleiten zusätzlicher Constraints (hier: unär oder binär),
die aus den bekannten Constraints logisch folgen,
d. h. in allen Lösungen erfüllt sind.

Beispiel: Constraint-Netz mit Variablen v1, v2, v3
mit Wertebereich {1, 2, 3} und Constraints v1 < v2 und v2 < v3.

Wir können beispielsweise folgern:

v2 kann nicht 3 sein (neuer unärer Constraint
= Einschränkung des Wertebereichs von v2)

v1 < v3 (neuer binärer Constraint
= trivialer Constraint verschärft)

Rv1v2 = {〈1, 2〉, 〈1, 3〉, 〈2, 3〉} kann verschärft werden
zu {〈1, 2〉} (verschärfter binärer Constraint)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Nutzen von Inferenz

Formal ist Inferenz Ersetzen des gegebenen Constraint-Netzes
durch ein schärferes äquivalentes Netz.

Nutzen: kleinerer Suchbaum

dem Nutzen steht der Berechnungsaufwand gegenüber

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Wo Inferenz verwenden?

Unterschiedliche Verwendungsmöglichkeiten für Inferenz:

einmalig als Vorverarbeitung vor der Suche

mit Suche kombiniert: bei jedem rekursiven Aufruf
der Backtracking-Prozedur

bereits belegte Variablen v 7→ d können wie dom(v) = {d}
verstanden werden mehr Schlussfolgerungen möglich
bei Backtracking müssen Verschärfungen durch Inferenz
zurückgenommen werden, da sie die gegebene Belegung
als Voraussetzung hatten

 mächtig, aber eventuell teuer

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Backtracking mit Inferenz

function BacktrackingWithInference(C, α):

if α is inconsistent with C:
return inconsistent

if α is a total assignment:
return α

C′ := 〈V , dom′, (R ′
uv)〉 := copy of C

apply inference to C′

if dom′(v) 6= ∅ for all variables v :

select some variable v for which α is not defined

for each d ∈ copy of dom′(v) in some order:
α′ := α ∪ {v 7→ d}
dom′(v) := {d}
α′′ := BacktrackingWithInference(C′, α′)
if α′′ 6= inconsistent:

return α′′

return inconsistent

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Backtracking mit Inferenz

function BacktrackingWithInference(C, α):

if α is inconsistent with C:
return inconsistent

if α is a total assignment:
return α

C′ := 〈V , dom′, (R ′
uv)〉 := copy of C

apply inference to C′

if dom′(v) 6= ∅ for all variables v :

select some variable v for which α is not defined

for each d ∈ copy of dom′(v) in some order:
α′ := α ∪ {v 7→ d}
dom′(v) := {d}
α′′ := BacktrackingWithInference(C′, α′)
if α′′ 6= inconsistent:

return α′′

return inconsistent

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Backtracking mit Inferenz: Diskussion

inference ist ein Platzhalter:
verschiedene Inferenzmethoden können eingesetzt werden

bei vielen Inferenzmethoden wird der anfängliche Test
auf Inkonsistenz von α überflüssig

kein inkonsistentes α kann erreicht werden,
da konfligierende Werte durch Inferenz
aus den Wertebereichen gestrichen werden

Inferenzmethode kann Unlösbarkeit (gegeben α) erkennen
und durch Leeren eines Wertebereichs signalisieren

effizient implementierte Inferenz oft inkrementell:
zuletzt belegtes Paar v 7→ d wird mitgeteilt und verwendet,
um die Berechnung zu beschleunigen

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Forward Checking

Wir beginnen mit einer sehr einfachen Inferenz-Methode:

Forward Checking

Inferenz: Entferne alle Variablen-/Werte-Paare aus dom′,
die mit bereits belegten Paaren im Konflikt stehen.

 Definition von Konflikt im vorigen Abschnitt

Inkrementelle Berechnung:

Immer, wenn v 7→ d zur Belegung hinzugefügt wird,
entferne alle mit v 7→ d im Konflikt stehenden Paare.

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Forward Checking: Diskussion

Eigenschaften von Forward Checking:

korrekte Inferenzmethode (erhält Äquivalenz)

beeinflusst Wertebereiche (= unäre Constraints),
aber nicht die binären Constraints

macht Konsistenztest am Anfang der Backtracking-Prozedur
überflüssig (Warum?)

billige, aber dennoch oft nützliche Inferenz-Methode

 selten eine gute Idee, nicht mindestens
Forward Checking zu verwenden

Im Folgenden betrachten wir mächtigere Inferenzmethoden.

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Kantenkonsistenz

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Kantenkonsistenz: Definition

Definition (kantenkonsistent)

Sei C = 〈V , dom, (Ruv)〉 ein Constraint-Netz.

(a) Eine Variable v ∈ V ist kantenkonsistent in Bezug auf
eine andere Variable v ′ ∈ V , wenn für jeden Wert d ∈ dom(v)
ein Wert d ′ ∈ dom(v ′) mit 〈d , d ′〉 ∈ Rvv ′ existiert.

(b) Das Constraint-Netz C ist kantenkonsistent,
wenn jede Variable v ∈ V kantenkonsistent
in Bezug auf jede andere Variable v ′ ∈ V ist.

Anmerkungen:

Definition für Variablenpaare ist asymmetrisch

v immer kantenkonsistent in Bezug auf v ′,
wenn Constraint zwischen v und v ′ trivial ist

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Kantenkonsistenz: Beispiel

Betrachte ein Constraint-Netz mit Variablen v1 und v2,
Wertebereichen dom(v1) = dom(v2) = {1, 2, 3}
und dem durch v1 < v2 beschriebenen Constraint.

1

2

3

1

2

3

v1 v2

Kantenkonsistenz von v1 in Bezug auf v2
und von v2 in Bezug auf v1 ist verletzt.

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Herstellen von Kantenkonsistenz

Herstellen von Kantenkonsistenz, d. h. Entfernen von Werten
aus dom(v), die die Kantenkonsistenz von v in Bezug auf v ′

verletzen, ist eine korrekte Inferenzmethode. (Warum?)

mächtiger als Forward Checking (Warum?)

Im folgenden betrachten wir Algorithmen
zum Herstellen von Kantenkonsistenz.

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Verarbeitung eines einzelnen Variablenpaars: revise

function revise(C, v , v ′):

〈V , dom, (Ruv)〉 := C
for each d ∈ dom(v):

if there is no d ′ ∈ dom(v ′) with 〈d , d ′〉 ∈ Rvv ′ :
remove d from dom(v)

Eingabe: Constraint-Netz C und zwei Variablen v , v ′ von C
Effekt: Macht v kantenkonsistent in Bezug auf v ′.
Alle verletzenden Werte werden aus dom(v) entfernt.

Zeitaufwand: O(k2), wenn k maximale Wertebereichsgrösse
(geeignete Kodierung von (Ruv) und dom vorausgesetzt)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Beispiel: revise

1

2

3

1

2

3

v v ′

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Beispiel: revise

1

2

3

1

2

3

v v ′

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Beispiel: revise

1

2

3

1

2

3

v v ′

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Beispiel: revise

1

2

3

1

2

3

v v ′

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Beispiel: revise

1

2

1

2

3

v v ′

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Herstellen von Kantenkonsistenz: AC-1

function AC-1(C):

〈V , dom, (Ruv)〉 := C
repeat

for each nontrivial constraint Ruv :
revise(C, u, v)
revise(C, v , u)

until no domain has changed in this iteration

Eingabe: Constraint-Netz C
Effekt: transformiert C in äquivalentes kantenkonsistentes Netz

Zeitaufwand: ?

O(n · e · k3), wenn n Variablen, e nichttriviale
Constraints und k maximale Wertebereichsgrösse

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Herstellen von Kantenkonsistenz: AC-1

function AC-1(C):

〈V , dom, (Ruv)〉 := C
repeat

for each nontrivial constraint Ruv :
revise(C, u, v)
revise(C, v , u)

until no domain has changed in this iteration

Eingabe: Constraint-Netz C
Effekt: transformiert C in äquivalentes kantenkonsistentes Netz

Zeitaufwand: O(n · e · k3), wenn n Variablen, e nichttriviale
Constraints und k maximale Wertebereichsgrösse

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-1: Diskussion

AC-1 erfüllt seine Aufgabe, ist aber ineffizient.

Oft werden Variablenpaare wieder und wieder überprüft,
deren Wertebereiche sich nicht geändert haben.

Diese Überprüfungen können eingespart werden.

 effizienterer Algorithmus: AC-3

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Herstellen von Kantenkonsistenz: AC-3

Idee: merke potenziell inkonsistente Variablenpaare in Queue

function AC-3(C):

〈V , dom, (Ruv)〉 := C
queue := ∅
for each nontrivial constraint Ruv :

insert 〈u, v〉 into queue
insert 〈v , u〉 into queue

while queue 6= ∅:
remove any element 〈u, v〉 from queue
revise(C, u, v)
if dom(u) changed in the call to revise:

for each w ∈ V \ {u, v} where Rwu is nontrivial:
insert 〈w , u〉 into queue

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Diskussion

queue kann eine beliebige Datenstruktur sein,
die Einfügen und Entfernen erlaubt
(Reihenfolge des Entfernens ist für Ergebnis egal)

 effizient z. B. ein Stack

AC-3 hat denselben Effekt wie AC-1:
es stellt Kantenkonsistenz her

Beweisidee: Invariante der while-Schleife:
Wenn 〈u, v〉 /∈ queue, dann u kantenkonsistent in Bezug auf v

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Zeitaufwand

Satz (Zeitaufwand von AC-3)

Sei C ein Constraint-Netz mit e nichttrivialen Constraints und
maximaler Wertebereichsgrösse k.
Dann läuft AC-3 in Zeit O(e · k3).

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Zeitaufwand (Beweis)

Beweis.

Betrachte einen einzelnen nichttrivialen Constraint.
Jedes Mal, wenn er in die Queue eingefügt wird (ausser beim
ersten Mal), wurde zuvor der Wertebereich einer der beteiligten
Variablen reduziert.
Das kann höchstens 2k mal passieren.
Damit wird jeder Constraint höchstens 2k + 1 = O(k) mal
in die Queue eingefügt und es gibt insgesamt höchstens O(e · k)
Einfügeoperationen.
Dies begrenzt die Zahl der Iterationen der while-Schleife
auf O(ek), weswegen die revise-Aufrufe höchstens Zeit
O(ek) · O(k2) = O(ek3) benötigen.

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Zeitaufwand (Beweis)

Beweis.

Betrachte einen einzelnen nichttrivialen Constraint.
Jedes Mal, wenn er in die Queue eingefügt wird (ausser beim
ersten Mal), wurde zuvor der Wertebereich einer der beteiligten
Variablen reduziert.
Das kann höchstens 2k mal passieren.
Damit wird jeder Constraint höchstens 2k + 1 = O(k) mal
in die Queue eingefügt und es gibt insgesamt höchstens O(e · k)
Einfügeoperationen.
Dies begrenzt die Zahl der Iterationen der while-Schleife
auf O(ek), weswegen die revise-Aufrufe höchstens Zeit
O(ek) · O(k2) = O(ek3) benötigen.

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Zeitaufwand (Beweis)

Beweis.

Betrachte einen einzelnen nichttrivialen Constraint.
Jedes Mal, wenn er in die Queue eingefügt wird (ausser beim
ersten Mal), wurde zuvor der Wertebereich einer der beteiligten
Variablen reduziert.
Das kann höchstens 2k mal passieren.
Damit wird jeder Constraint höchstens 2k + 1 = O(k) mal
in die Queue eingefügt und es gibt insgesamt höchstens O(e · k)
Einfügeoperationen.
Dies begrenzt die Zahl der Iterationen der while-Schleife
auf O(ek), weswegen die revise-Aufrufe höchstens Zeit
O(ek) · O(k2) = O(ek3) benötigen.

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Zeitaufwand (Beweis)

Beweis.

Betrachte einen einzelnen nichttrivialen Constraint.
Jedes Mal, wenn er in die Queue eingefügt wird (ausser beim
ersten Mal), wurde zuvor der Wertebereich einer der beteiligten
Variablen reduziert.
Das kann höchstens 2k mal passieren.
Damit wird jeder Constraint höchstens 2k + 1 = O(k) mal
in die Queue eingefügt und es gibt insgesamt höchstens O(e · k)
Einfügeoperationen.
Dies begrenzt die Zahl der Iterationen der while-Schleife
auf O(ek), weswegen die revise-Aufrufe höchstens Zeit
O(ek) · O(k2) = O(ek3) benötigen.

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Zeitaufwand (Beweis)

Beweis.

Betrachte einen einzelnen nichttrivialen Constraint.
Jedes Mal, wenn er in die Queue eingefügt wird (ausser beim
ersten Mal), wurde zuvor der Wertebereich einer der beteiligten
Variablen reduziert.
Das kann höchstens 2k mal passieren.
Damit wird jeder Constraint höchstens 2k + 1 = O(k) mal
in die Queue eingefügt und es gibt insgesamt höchstens O(e · k)
Einfügeoperationen.
Dies begrenzt die Zahl der Iterationen der while-Schleife
auf O(ek), weswegen die revise-Aufrufe höchstens Zeit
O(ek) · O(k2) = O(ek3) benötigen.

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v1, v2, v3
mit dom(v1) = {2, 4} und dom(v2) = dom(v3) = {2, 5}
sowie den Constraints v3|v1 und v3|v2 (“teilt”).

2,4v1 2,5 v2

2,5v3 Queue

(v1, v3)
(v3, v1)
(v2, v3)
(v3, v2)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v1, v2, v3
mit dom(v1) = {2, 4} und dom(v2) = dom(v3) = {2, 5}
sowie den Constraints v3|v1 und v3|v2 (“teilt”).

2,4v1 2,5 v2

2,5v3 Queue

(v1, v3)
(v3, v1)
(v2, v3)
(v3, v2)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v1, v2, v3
mit dom(v1) = {2, 4} und dom(v2) = dom(v3) = {2, 5}
sowie den Constraints v3|v1 und v3|v2 (“teilt”).

2,4v1 2,5 v2

2,5v3 2,5v3 Queue

(v1, v3)
(v3, v1)
(v2, v3)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v1, v2, v3
mit dom(v1) = {2, 4} und dom(v2) = dom(v3) = {2, 5}
sowie den Constraints v3|v1 und v3|v2 (“teilt”).

2,4v1 2,5 v2

2,5v3 Queue

(v1, v3)
(v3, v1)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v1, v2, v3
mit dom(v1) = {2, 4} und dom(v2) = dom(v3) = {2, 5}
sowie den Constraints v3|v1 und v3|v2 (“teilt”).

2,4v1 2,5 v2

2v3 Queue

(v1, v3)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v1, v2, v3
mit dom(v1) = {2, 4} und dom(v2) = dom(v3) = {2, 5}
sowie den Constraints v3|v1 und v3|v2 (“teilt”).

2,4v1 2,5 v2

2v3 Queue

(v1, v3)
(v2, v3)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v1, v2, v3
mit dom(v1) = {2, 4} und dom(v2) = dom(v3) = {2, 5}
sowie den Constraints v3|v1 und v3|v2 (“teilt”).

2,4v1 2,5 v2

2v3 Queue

(v1, v3)
(v2, v3)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v1, v2, v3
mit dom(v1) = {2, 4} und dom(v2) = dom(v3) = {2, 5}
sowie den Constraints v3|v1 und v3|v2 (“teilt”).

2,4v1 2 v2

2v3 Queue

(v1, v3)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v1, v2, v3
mit dom(v1) = {2, 4} und dom(v2) = dom(v3) = {2, 5}
sowie den Constraints v3|v1 und v3|v2 (“teilt”).

2,4v1 2 v2

2v3 Queue

(v1, v3)

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

AC-3: Beispiel

Betrachte Constraint-Netz mit drei Variablen v1, v2, v3
mit dom(v1) = {2, 4} und dom(v2) = dom(v3) = {2, 5}
sowie den Constraints v3|v1 und v3|v2 (“teilt”).

2,4v1 2 v2

2v3 Queue

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Pfadkonsistenz

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Jenseits von Kantenkonsistenz: Pfadkonsistenz

Grundidee der Kantenkonsistenz:

zu jeder Belegung einer Variable u muss es
eine passende Belegung jeder anderen Variable v geben

ansonsten werden Werte von u,
die nicht auf v erweiterbar sind, verboten

 neuer unärer Constraint auf u

Idee lässt sich auf drei Variablen erweitern (Pfadkonsistenz):

zu jeder gemeinsamen Belegung von Variablen u, v muss es
eine passende Belegung jeder anderen Variablen w geben

ansonsten werden Wertepaare für u und v ,
die nicht auf w erweiterbar sind, verboten

 neuer binärer Constraint auf u und v

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Jenseits von Kantenkonsistenz: i -Konsistenz

Generelles Konzept der i-Konsistenz für i ≥ 2:

zu jeder gemeinsamen Belegung von v1, . . . , vi−1 muss es
eine passende Belegung jeder anderen Variable vi geben

ansonsten werden Wertetupel für v1, . . . , vi−1,
die nicht auf vi erweiterbar sind, verboten

 neuer (i − 1)-stelliger Constraint auf v1, . . . , vi−1

2-Konsistenz = Kantenkonsistenz

3-Konsistenz = Pfadkonsistenz (*)

Wir betrachten allgemeine i-Konsistenz nicht näher,
zumal höhere Werte als i = 3 selten verwendet werden
und wir uns hier auf höchstens binäre Constraints beschränken.

(*) übliche Definitionen von 3-Konsistenz vs. Pfadkonsistenz unterscheiden

sich, wenn ternäre (dreistellige) Constraints erlaubt sind

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Pfadkonsistenz: Definition

Definition (pfadkonsistent)

Sei C = 〈V , dom, (Ruv)〉 ein Constraint-Netz.

(a) Zwei verschiedene Variablen v , v ′ ∈ V sind pfadkonsistent
in Bezug auf eine dritte Variable v ′′ ∈ V , wenn für beliebige
Werte d ∈ dom(v), d ′ ∈ dom(v ′) mit 〈d , d ′〉 ∈ Rvv ′

immer ein Wert d ′′ ∈ dom(v ′′) mit 〈d , d ′′〉 ∈ Rvv ′′

und 〈d ′, d ′′〉 ∈ Rv ′v ′′ existiert.

(b) Das Constraint-Netz C ist pfadkonsistent,
wenn für drei verschiedene Variablen v , v ′, v ′′ immer gilt,
dass v und v ′ pfadkonsistent in Bezug auf v ′′ sind.

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Pfadkonsistenz: Anmerkungen

Anmerkungen:

Selbst wenn Constraint Rvv ′ trivial ist, kann Pfadkonsistenz
nichttriviale Constraints zwischen v und v ′ inferieren.

Wenn das Netz kantenkonsistent ist,
kann Pfadkonsistenz nur dann zu neuer Information führen,
wenn sowohl Rvv ′′ als auch Rv ′v ′′ nichttrivial sind.

Name
”
Pfadkonsistenz“:

Pfad v → v ′′ → v ′ führt zu neuer Information über v → v ′

v ′′

v v ′

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Pfadkonsistenz: Beispiel

red
blue

v1

red
blue

v2

red
blue

v3

6= 6=

6=

kantenkonsistent, aber nicht pfadkonsistent

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Verarbeitung eines Variablentripels: revise-3

Analog zu revise für Kantenkonsistenz:

function revise-3(C, v , v ′, v ′′):

〈V , dom, (Ruv)〉 := C
for each 〈d , d ′〉 ∈ Rvv ′ :

if there is no d ′′ ∈ dom(v ′′) with 〈d , d ′′〉 ∈ Rvv ′′

and 〈d ′, d ′′〉 ∈ Rv ′v ′′ :
remove 〈d , d ′〉 from Rvv ′

Eingabe: Constraint-Netz C und drei Variablen v , v ′, v ′′ von C
Effekt: Macht v , v ′ pfadkonsistent in Bezug auf v ′′.
Alle verletzenden Paare werden aus Rvv ′ entfernt.

Zeitaufwand: O(k3), wenn k maximale Wertebereichsgrösse

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

Herstellen von Pfadkonsistenz: PC-2

Analog zu AC-3 für Kantenkonsistenz:

function PC-2(C):

〈V , dom, (Ruv)〉 := C
queue := ∅
for each set of two variables {u, v}:

for each w ∈ V \ {u, v}:
insert 〈u, v ,w〉 into queue

while queue 6= ∅:
remove any element 〈u, v ,w〉 from queue
revise(C, u, v ,w)
if Ruv changed in the call to revise:

for each w ′ ∈ V \ {u, v}:
insert 〈w ′, u, v〉 into queue
insert 〈w ′, v , u〉 into queue

Naives Backtracking Variablen- und Wertordnungen Inferenz Kantenkonsistenz Pfadkonsistenz

PC-2: Diskussion

Die Aussagen zu AC-3 gelten analog.

PC-2 stellt Pfadkonsistenz her

Beweisidee: Invariante der while-Schleife:
Wenn 〈u, v ,w〉 /∈ queue, dann u, v pfadkonsistent
in Bezug auf w

mögliche Optimierung: 〈u, v ,w〉 immer nur dann
in queue einfügen, wenn Ruw und Rvw nichttrivial

Laufzeit O(n3k5) für n Variablen und maximale
Wertebereichsgrösse k (Warum?)

	Naives Backtracking
	Variablen- und Wertordnungen
	Inferenz
	Kantenkonsistenz
	Pfadkonsistenz

