Grundlagen der Kunstlichen Intelligenz
8. Suchalgorithmen: Lokale Suche

Malte Helmert

Universitat Basel

5. April 2013



Einleitung




Einleitung
oeo

Suchprobleme: Uberblick

Kapiteliiberblick klassische Suchprobleme:
e Formalisierung von Suchproblemen (~ Kapitel 3)
@ blinde Suchverfahren (~~ Kapitel 4)

Heuristiken (~~ Kapitel 5)

Bestensuche (~~ Kapitel 6)

Eigenschaften von A*(~~ Kapitel 7)

Lokale Suche (~~ dieses Kapitel)



Einleitung

ooe

Lokale Suchverfahren

Lokale Suchverfahren arbeiten nur mit einem (oder wenigen)
aktuellen Knoten, statt systematisch Pfade zu untersuchen.

Besonders geeignet fiir kombinatorische Optimierungsprobleme:

@ Ldsung ist ein Zustand, nicht der Pfad dorthin.
Es gibt keine Aktionskosten, aber Zielzustinde kdnnen
verschiedene Kosten/Nutzen haben

@ Definition der Suchnachbarschaft ist frei wahlbar, nur Menge
der Zustdnde ist durch die Problemdefinition vorgegeben
(und ob sie Losungen und wie teuer sie sind)

@ Beispiele:

e Timetabling
o Konfigurationsprobleme
o kombinatorische Auktionen
~» Fokus im Folgenden auf solchen Problemen,
aber auch fiir allgemeine klassische Suchprobleme anwendbar



Lokale Suchverfahren



Lokale Suchverfahren
0®000000000

Lokale Suchverfahren: ldeen

@ Heuristik schatzt ab, wie weit eine Losung entfernt ist
und/oder wie gut diese Losung ist

@ es werden keine Pfade gemerkt, nur Zustdnde

@ normalerweise ein aktueller Zustand ~~ sehr speicherfreundlich
(dafiir nicht vollstandig oder optimal)

@ oft Initialisierung mit zufilligem Zustand

@ schrittweise Verbesserung durch , Bergsteigen® (hill-climbing)




Lokale Suchverfahren

00®@00000000

Beispiel: 8-Damen-Problem

Aufgabe: Platziere 8 Damen so, dass sie sich nicht bedrohen
Heuristik: Anzahl Damenpaare, die sich bedrohen
Nachbarschaft: bewege eine Dame in ihrer Spalte




Lokale Suchverfahren
000@0000000

Hill-Climbing

function HiLL -CLIMBING(problem) returns a state that is a local maximun

current < MAKE-NODE(problem.INITIAL -STATE)

loop do
neighbor < a highest-valued successorafrrent
if neighborMLUE < current.\ALUE then return current.STATE
current <— neighbor

Hier als Maximierung von Qualitat (value) formuliert.
Minimierung von Kosten/Heuristik analog.



Lokale Suchverfahren

0000e000000

Beispiel: Hill-Climbing fiir 8-Damen-Problem

Eine mogliche Variation von Hill-Climbing:
wahle zufillig eine Spalte und setze Dame dort
auf Feld mit minimal vielen Konflikten.

Gute lokale Suchverfahren kombinieren oft
Zufall (Exploration) mit Heuristik (Exploitation).



Lokale Suchverfahren
00000®00000

Probleme von lokalen Suchverfahren

@ Lokale Minima:
alle Nachbarn schlechter als aktueller Zustand

o Algorithmus bleibt auf diesem Zustand stecken
o = lokale Maxima, wenn es um Maximierung von
Nutzen/Qualitat geht statt um Minimierung von Kosten

o Plateaus:
viele Nachbarn gleich gut wie aktueller Zustand; keiner besser

o keine Fiithrung zum Zielzustand moglich

Massnahmen: zufallige Bewegung, Breitensuche oder Neustart



Beispiel: lokales Minimum im 8-Damen-Problem

Lokales Minimum:
@ Zustand hat 1 Konflikt

@ alle Nachbarn haben mindestens 2




Lokale Suchverfahren
0000000e000

Performance-Zahlen fir 8-Damen-Problem

Problem hat 8% ~ 17 Millionen Zustinde.

Nach zufilliger Initialisierung findet Hill-Climbing in etwa 14%
der Fille direkt eine Losung.

Im Durchschnitt nur etwa 4 Schritte!

bessere Verfahren: , Seitwartsbewegung" (Schritte ohne
Verbesserung) erlauben und Anzahl Schritte beschranken

@ Bei max. 100 erlaubten Schritten: Lésung in 94% der Fille,
im Durchschnitt 21 Schritte zur Lsung



Lokale Suchverfahren
00000000800

Simulierte Abkiihlung

Simulierte Abkiihlung (simulated annealing) ist ein lokales
Suchverfahren, bei dem systematisch , Rauschen" injiziert wird:
erst viel, dann immer weniger.

function SIMULATED -ANNEALING(problem, schedule) returnsa solution state
inputs. problem, a problem
schedule, a mapping from time to “temperature”

current < MAKE-NODE(problem.INITIAL -STATE)
for t = 1to co do
T < schedule(t)
if T =0thenreturn current
next <— a randomly selected successorcafrent
AFE <+ next.VALUE — current . VALUE
if AE > Othen current < next

else current < next only with probabilitye® /7

Sehr erfolgreich in bestimmten Anwendungen, z. B. VLSI-Layout.



Lokale Suchverfahren
00000000080

Genetische Algorithmen

Die Evolution findet sehr erfolgreich gute Lésungen.
Idee: Simuliere Evolution durch Selektion, Kreuzen und Mutation
von Individuen.
Zutaten:
@ Kodierung von Zustianden durch einen String von Symbolen
(oder Bits)
o Fitness-Funktion: bewertet die Giite von Zustinden
(entspricht Heuristik)
e Eine Bevdlkerung von k (z.B. 10-1000) ,,Individuen”
(Zusténden)

Beispiel 8-Damen-Problem: Kodierung als String von 8 Zahlen.
Fitness ist Anzahl nicht-attackierender Paare. Population besteht
aus 100 derartigen Zustanden.



Lokale Suchverfahren
0000000000e

Selektion, Mutation und Kreuzung

selection

} PEDeOED

v

cross-over

(141410 (] [{4diddéddd

mutation

EEEEETELIN

Viele Varianten:
Wie wird selektiert? Wie wird
gekreuzt? Wie wird mutiert?

Selektion anhand von
Fitness-Funktion; anschliessend
Paarung

Bestimmung von Punkten, an denen
gekreuzt wird, dann Rekombination

Mutation: String-Elemente werden mit
bestimmter Wahrscheinlichkeit
verandert.



Zusammenfassung



Zusammenfassung
oe

Zusammenfassung

@ lokale Suchverfahren betrachten einen oder wenige Zustinde
auf einmal und versuchen, schrittweise Verbesserungen zu
erzielen

@ besonders hdufig im Einsatz fiir kombinatorische
Optimierungsprobleme, wo der Pfad zum Ziel nicht wichtig
ist, sondern nur der gefundene Zielzustand

@ Simuliertes Abkiihlung und genetische Algorithmen sind
komplexere Suchverfahren, die typische Ideen aus der lokalen
Suche aufgreifen (Randomisierung, Weiterverfolgung von
vielversprechenden Zusténden)



	Einleitung
	Lokale Suchverfahren
	Zusammenfassung

