Grundlagen der Kiinstlichen Intelligenz

6. Suchalgorithmen: Bestensuche

Malte Helmert

Universitat Basel

22. Marz 2013

Einleitung

Einleitung
oeo

Heuristische Suchverfahren

Heuristische Suchverfahren:
Suchverfahren, die Heuristiken verwenden

@ systematische Suche (Bestensuche):
e gierige Bestensuche

A*

Weighted A*

IDA™

o lokale Suche:
e Hill-Climbing
e Simulierte Abkiihlung
e genetische Algorithmen

Einleitung
ooe

Suchprobleme: Uberblick

Kapiteliiberblick klassische Suchprobleme:
e Formalisierung von Suchproblemen (~ Kapitel 3)
@ blinde Suchverfahren (~~ Kapitel 4)

Heuristiken (~~ Kapitel 5)

Bestensuche (~~ dieses Kapitel)

Eigenschaften von A*(~~ Kapitel 7)

Lokale Suche (~~ Kapitel 8)

Bestensuche

Bestensuche
[o] elelolote}

Bestensuche

Bestensuche (best-first search) ist eine Klasse von Suchverfahren,
bei der in jedem Schritt der , beste” Knoten expandiert wird.

@ bei Entscheidung, welcher Knoten am besten ist,
wird Heuristikfunktion verwendet

e aber nicht unbedingt ausschliesslich
@ als Graphen- oder Baumsuche moglich

e Normalfall: Graphensuche (d. h. mit Duplikatelimination)

Bestensuche
00®0000

Bestensuche: Varianten

Bestensuche

Eine Bestensuche ist ein heuristisches Suchverfahren, das
Suchknoten mit einer Bewertungsfunktion f bewertet und immer
einen Knoten n mit minimalem f(n) expandiert.

@ unterschiedliche Definitionen fiir f
~» unterschiedliche Suchverfahren
@ Implementation wie uniforme Kostensuche

o Bestensuche mit f(n) := g(n) ist uniforme Kostensuche
o Allerdings wiirde man ein Verfahren, das h nicht verwendet,
normalerweise nicht , Bestensuche" nennen

Einleitung Bestensuche ¢ estensuche Zusammenfassung

000e000

Bestensuche: Pseudo-Code (ohne Reopening)

Bestensuche (mit verzogerter Duplikatelim., ohne Reopening)

open := new min-heap ordered by f
open.insert(make-root-node(init()))
closed :=)
while not open.empty():
n = open.pop-min()
if n.state ¢ closed:
closed := closed U {n.state}
if is-goal(n.state):
return extract-solution(n)
for each (a, s’) € succ(n.state):
if h(s’) < oo:
n’ := make-node(n, a, s")
open.insert(n’)
return unsolvable)

Bestensuche
000®000

Bestensuche: Pseudo-Code (ohne Reopening)

Bestensuche (mit verzogerter Duplikatelim., ohne Reopening)

open := new min-heap ordered by f
open.insert(make-root-node(init()))
closed :=)
while not open.empty():
n = open.pop-min()
if n.state ¢ closed:
closed := closed U {n.state}
if is-goal(n.state):
return extract-solution(n)
for each (a,s’) € succ(n.state):
if h(s') < oo:
n’ := make-node(n, a, s")
open.insert(n’)
return unsolvable)

Bestensuche
000000

Reopening

@ Erinnerung: uniforme Kostensuche besucht Zustande
in Reihenfolge aufsteigender g-Werte

~ garantiert, dass bei Expansion eine Knotens
billigster Pfad zu dessen Zustand gefunden wurde

@ bei Bestensuche gilt dies im Allgemeinen nicht

~» manche Bestensuchverfahren expandieren bereits betrachtete
Zustdnde erneut, wenn billigerer Pfad gefunden (Reopening)

mmenfassung

Bestensuche
0000080

Bestensuche: Pseudo-Code (mit Reopening)

Bestensuche (mit verzégerter Duplikatelimination und Reopening)

open := new min-heap ordered by f
open.insert(make-root-node(init()))
distances := new hash-table
while not open.empty():
n = open.pop-min()
if n.state ¢ distances or g(n) < distances|[n.state]:
distances|n.state] := g(n)
if is-goal(n.state):
return extract-solution(n)
for each (a,s’) € succ(n.state):
if h(s’) < oo:
n’ := make-node(n, a, s")
open.insert(n’)
return unsolvable)

distances steuert Reopening und libernimmt Rolle von closed

Bestensuche
000000e

Die wichtigsten Bestensuchverfahren

Die wichtigsten Bestensuchverfahren:

Bestensuche
000000e

Die wichtigsten Bestensuchverfahren

Die wichtigsten Bestensuchverfahren:
e f(n) = h(n):
~- gierige Bestensuche (greedy best-first search)
~ nur die Heuristik zahlt

Bestensuche
000000e

Die wichtigsten Bestensuchverfahren

Die wichtigsten Bestensuchverfahren:
e f(n) = h(n):
~- gierige Bestensuche (greedy best-first search)
~ nur die Heuristik zahlt
e f(n)=g(n)+ h(n):
~ A*
~» Kombination aus Pfadkosten und Heuristik

Bestensuche
000000e

Die wichtigsten Bestensuchverfahren

Die wichtigsten Bestensuchverfahren:
e f(n) = h(n):
~- gierige Bestensuche (greedy best-first search)
~ nur die Heuristik zahlt
e f(n)=g(n)+ h(n):
~ A*
~» Kombination aus Pfadkosten und Heuristik
e f(n)=g(n)+ w- h(n):
~ Weighted A*
shnlich A*; w € R{ ist ein Parameter

Bestensuche
000000e

Die wichtigsten Bestensuchverfahren

Die wichtigsten Bestensuchverfahren:
e f(n) = h(n):
~- gierige Bestensuche (greedy best-first search)
~ nur die Heuristik zahlt
e f(n)=g(n)+ h(n):
~ A*
~» Kombination aus Pfadkosten und Heuristik
e f(n)=g(n)+ w- h(n):
~ Weighted A*
shnlich A*; w € R{ ist ein Parameter

~» im Folgenden: detailliertere Besprechung dieser Algorithmen

Gierige Bestensuche

Gierige Bestensuche
0®000

Gierige Bestensuche

Gierige Bestensuche
Beriicksichtige nur die Heuristik: (n) = h(n)

@ normalerweise aus Effizienzgriinden
ohne Reopening implementiert

@ wir betrachten nur diese Variante

Gierige Bestensuche
00®00

Beispiel: gierige Bestensuche fiir Routenplanung

Sibiu

g9 Fagaras

Dobreta]

Eforie

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366

160
242
161
176

7
151
226
244
241
234
380
100
193
253
329

80
199
374

Gierige Bestensuche
000e0

Beispiel: gierige Bestensuche fiir Routenplanung

(a) Theinitial state

366

Gierige Bestensuche
000e0

Beispiel: gierige Bestensuche fiir Routenplanung

(&) Theinitial state

366

(b) After expanding Arad Arad
SETD o>

253 329 374

Gierige Bestensuche
000e0

Beispiel: gierige Bestensuche fiir Routenplanung

(&) Theinitial state
366
(b) After expanding Arad Arad
> Shiu > Czeind>
253 329 374

(c) After expanding Sibiu

Gierige Bestensuche

[elele] lo]

Beispiel: gierige Bestensuche fiir Routenplanung

(a) Theinitial state

366

(b) After expanding Arad

253 329 374

Gierige Bestensuche
[eelelol]

Gierige Bestensuche: Eigenschaften

e vollstandig fiir sichere Heuristiken (wegen Duplikatelimination)
@ suboptimal (Lésung kann beliebig schlecht sein)
o oft eines der besten Suchverfahren in der Praxis

e monotone Transformationen von h (z. B. Skalierung,
Addition einer Konstante) dndern nicht das Verhalten

A*

A*
O®@00000

Kombiniere gierige Suche mit uniformer Kostensuche:
f(n) = &(n) + h(n)

@ Abwdagen zwischen Pfadkosten und Zielndhe

o f(n) schatzt Kosten der giinstigsten Losung
vom Anfangszustand iiber n ins Ziel

A*
[ele] lelelele}

A™: Zitierungen

My Citations
GOUSIQ scholar [hart nilsson raphael |7 search |
[Articles and patents ¢ |[anytime | ¢ |[includecitations | ¢ | [*<] reate email alertRes

Aformal basis for the heuristic determination of minimum cost paths

. NJ Nilsson, B Raphael - Systems Science and ..., 1968 - ieeexplore.ieee.org
Abstract Although the problem of determining the minimum cost path through a graph arises
naturally in a number of interesting applications, there has been no underlying theory to
guide the development of efficient search procedures. Moreover, there is no adequate ...
Cited by 2591 - Related articles - All 13 versions

Correction to a formal basis for the heuristic determination of minimum cost paths
. NJ Nilsson, B Raphael - ACM SIGART Bulletin, 1972 - dl.acm.org

Abstract Our paper on the use of heuristic information in graph searching defined a path-

finding algorithm, A*, and proved that it had two important properties. In the notation of the

paper, we proved that if the heuristic function i (n) is a lower bound on the true minimal ...

Cited by 195 - Related articles - All 6 versions

remamion) Bi-directional search
1 Pohi - 1670 - IBM TJ Watson Research Center
Cited by 337 - Related articles - Eind in IDS - All 2 versions

cmation] andB. R
. NJ Nilsson - IEEE Transaction on SSC, 1968
Cited by 28 - Related articies

of minil path cost

temamion] R and icati artificial i
B Raphael, R Duda. RE Fikes, PE Hart. N Nilsson... - Final Report, SRI Project, 1971
Cited by 13 - Related articles

A mobile automaton: An application of artificial intelligence techniques
MJ Nilsson - 1969 - DTIC Document

A*
[ele] lelelele}

A™: Zitierungen

My Citations
GOUSIQ scholar [hart nilsson raphael |7 search |
[Articles and patents ¢ |[anytime | ¢ |[includecitations | ¢ | [*<] reate email alertRes

Aformal basis for the heuristic determination of minimum cost paths

. NJ Nilsson, B Raphael - Systems Science and ..., 1968 - ieeexplore.ieee.org
Abstract Although the problem of determining the minimum cost path through a graph arises
naturally in a number of interesting applications, there has been no underlying theory to

quide lopment of efficient search procedures. Moreover, there is no adequate ...
Cited fg 2591 Jpelated articles - All 13 versions

Correction to a formal basis for the heuristic determination of minimum cost paths
. NJ Nilsson, B Raphael - ACM SIGART Bulletin, 1972 - dl.acm.org

Abstract Our paper on the use of heuristic information in graph searching defined a path-

finding algorithm, A*, and proved that it had two important properties. In the notation of the

paper, we proved that if the heuristic function i (n) is a lower bound on the true minimal ...

Cited by 195 - Related articles - All 6 versions

remamion) Bi-directional search
1 Pohi - 1670 - IBM TJ Watson Research Center
Cited by 337 - Related articles - Eind in IDS - All 2 versions

cmation] andB. R
. NJ Nilsson - IEEE Transaction on SSC, 1968
Cited by 28 - Related articies

of minil path cost

temamion] R and icati artificial i
B Raphael, R Duda. RE Fikes, PE Hart. N Nilsson... - Final Report, SRI Project, 1971
Cited by 13 - Related articles

A mobile automaton: An application of artificial intelligence techniques
MJ Nilsson - 1969 - DTIC Document

A*
[elee] lelele}

Beispiel: A* fiir Routenplanung

Sibiu

g9 Fagaras

Dobreta]
Eforie

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366

160
242
161
176

7
151
226
244
241
234
380
100
193
253
329

80
199
374

A*
0000e@00

Beispiel: A* fiir Routenplanung

(a) Theinitial state

366=0+366

A*
0000e@00

Beispiel: A* fiir Routenplanung

(a) Theinitial state
366=0+366
(b) After expanding Arad Arad
> 3
447=118+329 449=75+374

393=140+253

A*
0000e@00

Beispiel: A* fiir Routenplanung

(a) Theinitial state
366=0+366
(b) After expanding Arad CArad >
> 3
393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

449=T5+374

447=118+329

646=280+366 415=239+176 671=291+380 413=220+193

A*
0000e@00

Beispiel: A* fiir Routenplanung

(a) Theinitial state

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

449=T5+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea CArad D>

449=T75+374

526=366+160 417=317+100 553=300+253

A*
0000e@00

Beispiel: A* fiir Routenplanung

(e) After expanding Fagaras

447=118+329 449=75+374

A*
0000e@00

Beispiel: A* fiir Routenplanung

(e) After expanding Fagaras

447=118+329 449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

447=118+329 449=T75+374

418=418+0 615=455+160 607=414+193

A*
00000e0

A*: Eigenschaften

@ vollstandig fiir sichere Heuristiken
@ mit Reopening:

e optimal, wenn Heuristik zuldssig
@ ohne Reopening:

e optimal, wenn Heuristik konsistent und zielerkennend

~> Beweise: nachstes Kapitel

A*
0O00000e

A*: Implementierungsaspekte

Einige praktische Hinweise fiir die Implementation von A*:

Bei Knoten mit identischen f-Werten wird der h-Wert
zur Heap-Ordnung herangezogen.
Dabei werden Knoten mit niedrigen h-Werten bevorzugt.

haufiger Bug: Reopening wird vergessen,
obwohl Konsistenz nicht garantiert ist

haufiger Bug: Duplikatelimination wird schon
bei der Erzeugung von Knoten vorgenommen

haufiger Bug: Zieltest findet an der falschen Stelle statt

all diese Bugs kdnnen lange unerkannt bleiben
und fiihren im Allgemeinen zum Verlust der Optimalitat

Weighted A*

Weighted A*
oeo

Weighted A*

Weighted A*

A* mit stirker gewichteter Heuristik: (n) = g(n) + w - h(n),
wobei Gewicht w € RO+ mit w > 1 frei wahlbarer Parameter

Weighted A*
ocoe

Weighted A*: Eigenschaften

Das frei wahlbare Gewicht steuert, wie gierig der Algorithmus ist:
@ w = 0: wie uniforme Kostensuche
o w=1: wie A*

@ w — 0o: wie gierige Bestensuche

Mit w > 1 analoge Eigenschaften zu A*:
@ h konsistent und zielerkennend:
gefundene Lésung hochstens Faktor w teurer als Optimum;
kein Reopening nétig
o h zulassig:
gefundene Loésung hochstens Faktor w teurer als Optimum,
wenn Reopening verwendet wird

(ohne Beweis)

OOOOOO

IDA”

Der Hauptnachteil der vorgestellten Bestensuchverfahren

ist ihr Platzaufwand.

Idee: dhnlicher Ansatz wie bei der iterativen Tiefensuche:
@ beschrankte Tiefensuche mit ansteigenden Schranken
@ statt der Tiefe beschranken wir f

~~ IDA* (iterative-deepening A*)
@ anders als die anderen Bestensuchverfahren eine Baumsuche

IDA™: Pseudo-Code (Hauptprozedur)

IDA*: Hauptprozedur

no := make-root-node(init())
f-limit :== 0
while f-limit # oo:
(f-limit, solution) := recursive-search(ng, f-limit)
if solution # none:
return solution
return unsolvable

Einleitung e G suc A ed A - Zusammenfassung

IDA*: Pseudo-Code (Tiefensuche)

function recursive-search(n, f-limit):

if f(n) > flimit:
return (f(n), none)
if is-goal(n.state):
return (none, extract-solution(n))
next-limit := oo
for each (a,s’) € succ(n.state):
if h(s") < oo:
n' := make-node(n, a, s’)
(rec-limit, solution) := recursive-search(n’, f-limit)
if solution # none:
return (none, solution)
next-limit := min(next-limit, rec-limit)
return (next-limit, none)

(Praktische Implementierung verwendet in der Regel
keine explizite Datenstruktur fiir Knoten.)

IDA*: Eigenschaften

Erbt wichtige Eigenschaften von A* und iterativer Tiefensuche:

@ semi-vollstandig, wenn h sicher und cost(a) > 0
fiir alle Aktionen a

@ optimal, wenn h zul3ssig

o expandiert fiir zuldssiges h nur Zustande mit £,*(s) < c*,
wobei ¢* optimale Lésungskosten

e Platzaufwand O(/b), wobei | Lange des langsten erzeugten
Pfades (bei Einheitskosten: < c¢*), b Verzweigungsgrad

IDA*: weitere Eigenschaften

o gegeniiber A* potenziell erheblicher Mehraufwand
durch Nichterkennen von Duplikaten
~~ bei vielen Problemen exponentiell mehr Zeitaufwand
~~ oft mit teilweiser Duplikatelimination kombiniert
(Zykelerkennung, Transpositionstabellen)
@ Zusatzkosten durch iteratives Erhohen der f-Schranke oft,
aber nicht immer vernachlassigbar
e problematisch vor allem, wenn viele stark unterschiedliche
Aktionskosten existieren, weil dann moglich ist, dass bei jeder
Schrankenerhéhung nur wenige neue Zustande erreicht werden

Zusammenfassung

Zusammenfassung
oe

Zusammenfassung

@ Bestensuche expandiert immer den anhand der f-Funktion
besten Zustand

verschiedene Verfahren durch verschiedene f-Funktionen:

o f = h: gierige Bestensuche

suboptimal, oft sehr effizient
o f=g+h A"

optimal, falls h zielerkennend und konsistent

oder falls h zuldssig und Reopening durchgefiihrt wird
o f =g+ w- h: Weighted A*

fiir w > 1 Suboptimalitdtsfaktor héchstens w,

wenn Bedingungen fiir die Optimalitdt von A* gelten

Speichereffiziente Varianten:

o IDA* ist eine Baumsuchvariante von A*,
die auf der ldee der iterativen Tiefensuche aufbaut

	Einleitung
	Bestensuche
	Gierige Bestensuche
	A*
	Weighted A*
	IDA*
	Zusammenfassung

