
Grundlagen der Künstlichen Intelligenz
6. Suchalgorithmen: Bestensuche

Malte Helmert

Universität Basel

22. März 2013



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Einleitung



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Heuristische Suchverfahren

Heuristische Suchverfahren:
Suchverfahren, die Heuristiken verwenden

systematische Suche (Bestensuche):

gierige Bestensuche
A∗

Weighted A∗

IDA∗

lokale Suche:

Hill-Climbing
Simulierte Abkühlung
genetische Algorithmen



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Suchprobleme: Überblick

Kapitelüberblick klassische Suchprobleme:

Formalisierung von Suchproblemen ( Kapitel 3)

blinde Suchverfahren ( Kapitel 4)

Heuristiken ( Kapitel 5)

Bestensuche ( dieses Kapitel)

Eigenschaften von A∗( Kapitel 7)

Lokale Suche ( Kapitel 8)



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Bestensuche



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Bestensuche

Bestensuche (best-first search) ist eine Klasse von Suchverfahren,
bei der in jedem Schritt der

”
beste“ Knoten expandiert wird.

bei Entscheidung, welcher Knoten am besten ist,
wird Heuristikfunktion verwendet

aber nicht unbedingt ausschliesslich

als Graphen- oder Baumsuche möglich

Normalfall: Graphensuche (d. h. mit Duplikatelimination)



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Bestensuche: Varianten

Bestensuche

Eine Bestensuche ist ein heuristisches Suchverfahren, das
Suchknoten mit einer Bewertungsfunktion f bewertet und immer
einen Knoten n mit minimalem f (n) expandiert.

unterschiedliche Definitionen für f
 unterschiedliche Suchverfahren

Implementation wie uniforme Kostensuche

Bestensuche mit f (n) := g(n) ist uniforme Kostensuche
Allerdings würde man ein Verfahren, das h nicht verwendet,
normalerweise nicht

”
Bestensuche“ nennen



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Bestensuche: Pseudo-Code (ohne Reopening)

Bestensuche (mit verzögerter Duplikatelim., ohne Reopening)

open := new min-heap ordered by f
open.insert(make-root-node(init()))
closed := ∅
while not open.empty():

n = open.pop-min()
if n.state /∈ closed:

closed := closed ∪ {n.state}
if is-goal(n.state):

return extract-solution(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make-node(n, a, s ′)
open.insert(n′)

return unsolvable



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Bestensuche: Pseudo-Code (ohne Reopening)

Bestensuche (mit verzögerter Duplikatelim., ohne Reopening)

open := new min-heap ordered by f
open.insert(make-root-node(init()))
closed := ∅
while not open.empty():

n = open.pop-min()
if n.state /∈ closed:

closed := closed ∪ {n.state}
if is-goal(n.state):

return extract-solution(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make-node(n, a, s ′)
open.insert(n′)

return unsolvable



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Reopening

Erinnerung: uniforme Kostensuche besucht Zustände
in Reihenfolge aufsteigender g -Werte

 garantiert, dass bei Expansion eine Knotens
billigster Pfad zu dessen Zustand gefunden wurde

bei Bestensuche gilt dies im Allgemeinen nicht

 manche Bestensuchverfahren expandieren bereits betrachtete
Zustände erneut, wenn billigerer Pfad gefunden (Reopening)



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Bestensuche: Pseudo-Code (mit Reopening)

Bestensuche (mit verzögerter Duplikatelimination und Reopening)

open := new min-heap ordered by f
open.insert(make-root-node(init()))
distances := new hash-table
while not open.empty():

n = open.pop-min()
if n.state /∈ distances or g(n) < distances[n.state]:

distances[n.state] := g(n)
if is-goal(n.state):

return extract-solution(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make-node(n, a, s ′)
open.insert(n′)

return unsolvable

distances steuert Reopening und übernimmt Rolle von closed



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Die wichtigsten Bestensuchverfahren

Die wichtigsten Bestensuchverfahren:

f (n) = h(n):
 gierige Bestensuche (greedy best-first search)
 nur die Heuristik zählt

f (n) = g(n) + h(n):
 A∗

 Kombination aus Pfadkosten und Heuristik

f (n) = g(n) + w · h(n):
 Weighted A∗

ähnlich A∗; w ∈ R+
0 ist ein Parameter

 im Folgenden: detailliertere Besprechung dieser Algorithmen



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Die wichtigsten Bestensuchverfahren

Die wichtigsten Bestensuchverfahren:

f (n) = h(n):
 gierige Bestensuche (greedy best-first search)
 nur die Heuristik zählt

f (n) = g(n) + h(n):
 A∗

 Kombination aus Pfadkosten und Heuristik

f (n) = g(n) + w · h(n):
 Weighted A∗

ähnlich A∗; w ∈ R+
0 ist ein Parameter

 im Folgenden: detailliertere Besprechung dieser Algorithmen



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Die wichtigsten Bestensuchverfahren

Die wichtigsten Bestensuchverfahren:

f (n) = h(n):
 gierige Bestensuche (greedy best-first search)
 nur die Heuristik zählt

f (n) = g(n) + h(n):
 A∗

 Kombination aus Pfadkosten und Heuristik

f (n) = g(n) + w · h(n):
 Weighted A∗

ähnlich A∗; w ∈ R+
0 ist ein Parameter

 im Folgenden: detailliertere Besprechung dieser Algorithmen



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Die wichtigsten Bestensuchverfahren

Die wichtigsten Bestensuchverfahren:

f (n) = h(n):
 gierige Bestensuche (greedy best-first search)
 nur die Heuristik zählt

f (n) = g(n) + h(n):
 A∗

 Kombination aus Pfadkosten und Heuristik

f (n) = g(n) + w · h(n):
 Weighted A∗

ähnlich A∗; w ∈ R+
0 ist ein Parameter

 im Folgenden: detailliertere Besprechung dieser Algorithmen



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Die wichtigsten Bestensuchverfahren

Die wichtigsten Bestensuchverfahren:

f (n) = h(n):
 gierige Bestensuche (greedy best-first search)
 nur die Heuristik zählt

f (n) = g(n) + h(n):
 A∗

 Kombination aus Pfadkosten und Heuristik

f (n) = g(n) + w · h(n):
 Weighted A∗

ähnlich A∗; w ∈ R+
0 ist ein Parameter

 im Folgenden: detailliertere Besprechung dieser Algorithmen



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Gierige Bestensuche



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Gierige Bestensuche

Gierige Bestensuche

Berücksichtige nur die Heuristik: f (n) = h(n)

normalerweise aus Effizienzgründen
ohne Reopening implementiert

wir betrachten nur diese Variante



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Beispiel: gierige Bestensuche für Routenplanung

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Beispiel: gierige Bestensuche für Routenplanung

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Beispiel: gierige Bestensuche für Routenplanung

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Beispiel: gierige Bestensuche für Routenplanung

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Beispiel: gierige Bestensuche für Routenplanung

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Gierige Bestensuche: Eigenschaften

vollständig für sichere Heuristiken (wegen Duplikatelimination)

suboptimal (Lösung kann beliebig schlecht sein)

oft eines der besten Suchverfahren in der Praxis

monotone Transformationen von h (z. B. Skalierung,
Addition einer Konstante) ändern nicht das Verhalten



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

A∗



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

A∗

A∗

Kombiniere gierige Suche mit uniformer Kostensuche:
f (n) = g(n) + h(n)

Abwägen zwischen Pfadkosten und Zielnähe

f (n) schätzt Kosten der günstigsten Lösung
vom Anfangszustand über n ins Ziel



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

A∗: Zitierungen



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

A∗: Zitierungen



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Beispiel: A∗ für Routenplanung

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Beispiel: A∗ für Routenplanung

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Beispiel: A∗ für Routenplanung

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Beispiel: A∗ für Routenplanung

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Beispiel: A∗ für Routenplanung

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Beispiel: A∗ für Routenplanung

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Beispiel: A∗ für Routenplanung

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

A∗: Eigenschaften

vollständig für sichere Heuristiken

mit Reopening:

optimal, wenn Heuristik zulässig

ohne Reopening:

optimal, wenn Heuristik konsistent und zielerkennend

 Beweise: nächstes Kapitel



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

A∗: Implementierungsaspekte

Einige praktische Hinweise für die Implementation von A∗:

Bei Knoten mit identischen f -Werten wird der h-Wert
zur Heap-Ordnung herangezogen.
Dabei werden Knoten mit niedrigen h-Werten bevorzugt.

häufiger Bug: Reopening wird vergessen,
obwohl Konsistenz nicht garantiert ist

häufiger Bug: Duplikatelimination wird schon
bei der Erzeugung von Knoten vorgenommen

häufiger Bug: Zieltest findet an der falschen Stelle statt

all diese Bugs können lange unerkannt bleiben
und führen im Allgemeinen zum Verlust der Optimalität



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Weighted A∗



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Weighted A∗

Weighted A∗

A∗ mit stärker gewichteter Heuristik: f (n) = g(n) + w · h(n),
wobei Gewicht w ∈ R+

0 mit w ≥ 1 frei wählbarer Parameter



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Weighted A∗: Eigenschaften

Das frei wählbare Gewicht steuert, wie gierig der Algorithmus ist:

w = 0: wie uniforme Kostensuche

w = 1: wie A∗

w →∞: wie gierige Bestensuche

Mit w ≥ 1 analoge Eigenschaften zu A∗:

h konsistent und zielerkennend:
gefundene Lösung höchstens Faktor w teurer als Optimum;
kein Reopening nötig

h zulässig:
gefundene Lösung höchstens Faktor w teurer als Optimum,
wenn Reopening verwendet wird

(ohne Beweis)



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

IDA∗



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

IDA∗

Der Hauptnachteil der vorgestellten Bestensuchverfahren
ist ihr Platzaufwand.

Idee: ähnlicher Ansatz wie bei der iterativen Tiefensuche:

beschränkte Tiefensuche mit ansteigenden Schranken

statt der Tiefe beschränken wir f

 IDA∗ (iterative-deepening A∗)

anders als die anderen Bestensuchverfahren eine Baumsuche



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

IDA∗: Pseudo-Code (Hauptprozedur)

IDA∗: Hauptprozedur

n0 := make-root-node(init())
f-limit := 0
while f-limit 6=∞:

〈f-limit, solution〉 := recursive-search(n0, f-limit)
if solution 6= none:

return solution
return unsolvable



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

IDA∗: Pseudo-Code (Tiefensuche)

function recursive-search(n, f-limit):

if f (n) > f-limit:
return 〈f (n),none〉

if is-goal(n.state):
return 〈none, extract-solution(n)〉

next-limit :=∞
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make-node(n, a, s ′)
〈rec-limit, solution〉 := recursive-search(n′, f-limit)
if solution 6= none:

return 〈none, solution〉
next-limit := min(next-limit, rec-limit)

return 〈next-limit,none〉

(Praktische Implementierung verwendet in der Regel
keine explizite Datenstruktur für Knoten.)



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

IDA∗: Eigenschaften

Erbt wichtige Eigenschaften von A∗ und iterativer Tiefensuche:

semi-vollständig, wenn h sicher und cost(a) > 0
für alle Aktionen a

optimal, wenn h zulässig

expandiert für zulässiges h nur Zustände mit f ∗h (s) ≤ c∗,
wobei c∗ optimale Lösungskosten

Platzaufwand O(lb), wobei l Länge des längsten erzeugten
Pfades (bei Einheitskosten: ≤ c∗), b Verzweigungsgrad



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

IDA∗: weitere Eigenschaften

gegenüber A∗ potenziell erheblicher Mehraufwand
durch Nichterkennen von Duplikaten

 bei vielen Problemen exponentiell mehr Zeitaufwand
 oft mit teilweiser Duplikatelimination kombiniert

(Zykelerkennung, Transpositionstabellen)

Zusatzkosten durch iteratives Erhöhen der f -Schranke oft,
aber nicht immer vernachlässigbar

problematisch vor allem, wenn viele stark unterschiedliche
Aktionskosten existieren, weil dann möglich ist, dass bei jeder
Schrankenerhöhung nur wenige neue Zustände erreicht werden



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Zusammenfassung



Einleitung Bestensuche Gierige Bestensuche A∗ Weighted A∗ IDA∗ Zusammenfassung

Zusammenfassung

Bestensuche expandiert immer den anhand der f -Funktion
besten Zustand

verschiedene Verfahren durch verschiedene f -Funktionen:

f = h: gierige Bestensuche
suboptimal, oft sehr effizient

f = g + h: A∗

optimal, falls h zielerkennend und konsistent
oder falls h zulässig und Reopening durchgeführt wird

f = g + w · h: Weighted A∗

für w ≥ 1 Suboptimalitätsfaktor höchstens w ,
wenn Bedingungen für die Optimalität von A∗ gelten

Speichereffiziente Varianten:

IDA∗ ist eine Baumsuchvariante von A∗,
die auf der Idee der iterativen Tiefensuche aufbaut


	Einleitung
	Bestensuche
	Gierige Bestensuche
	A*
	Weighted A*
	IDA*
	Zusammenfassung

