
Grundlagen der Künstlichen Intelligenz
4. Suchalgorithmen: Grundlagen & blinde Verfahren

Malte Helmert

Universität Basel

11. März 2013

Grundlagen Blinde Suchverfahren Zusammenfassung

Grundlagen

Grundlagen Blinde Suchverfahren Zusammenfassung

Suchalgorithmen

Beginne beim Anfangszustand und expandiere in jedem Schritt
einen Zustand durch Erzeugen seiner Nachfolger
 Suchbaum bzw. Suchraum

03/23

General Search

From the initial state, produce all successive states step
by step  search tree.

(3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)(a) initial state

(b) after expansion

of (3,2,0)

of (3,3,1)

(c) after expansion (3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)

Grundlagen Blinde Suchverfahren Zusammenfassung

Suchalgorithmen

Beginne beim Anfangszustand und expandiere in jedem Schritt
einen Zustand durch Erzeugen seiner Nachfolger
 Suchbaum bzw. Suchraum

03/23

General Search

From the initial state, produce all successive states step
by step  search tree.

(3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)(a) initial state

(b) after expansion

of (3,2,0)

of (3,3,1)

(c) after expansion (3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)

Grundlagen Blinde Suchverfahren Zusammenfassung

Suchalgorithmen

Beginne beim Anfangszustand und expandiere in jedem Schritt
einen Zustand durch Erzeugen seiner Nachfolger
 Suchbaum bzw. Suchraum

03/23

General Search

From the initial state, produce all successive states step
by step  search tree.

(3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)(a) initial state

(b) after expansion

of (3,2,0)

of (3,3,1)

(c) after expansion (3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)

Grundlagen Blinde Suchverfahren Zusammenfassung

Begriffe

Suchknoten
repräsentiert in der Suche erreichten Zustand
und zugehörige Informationen

Knotenexpansion
Erzeugen der Nachfolgerknoten eines Knotens
durch Anwendung aller dort anwendbaren Aktionen

Open-Liste oder Frontier
Menge der Knoten, die Kandidaten für die Expansion sind

Closed-Liste
Menge der bereits expandierten Knoten

Suchstrategie
bestimmt, welcher Knoten als nächstes expandiert wird

Grundlagen Blinde Suchverfahren Zusammenfassung

Baumsuche vs. Graphensuche

Baumsuche:

Suchknoten als Baum organisiert (Suchbaum)

jeder Knoten entspricht einem Pfad vom Anfangszustand

Duplikate (mehrere Knoten für denselben Zustand) möglich

Suchbaum kann endlos tief verzweigen (
”
im Kreis laufen“)

Graphensuche:

Suchknoten als gerichteter Graph organisiert (Suchraum)

Duplikate vermeiden: zu jedem Zustand max. ein Knoten

Grundlagen Blinde Suchverfahren Zusammenfassung

Implementierung des Suchraums

Datenstruktur für jeden Suchknoten n

n.State: Zustand, dem der Knoten entspricht

n.Parent: Suchknoten, der diesen Knoten erzeugt hat

n.Action: Aktion, durch die wir vom Parent zu n gelangen

n.Path-Cost: Kosten des Pfades vom Anfangszustand zu n.State,
der sich durch Verfolgen der Parent-Verweise ergibt
(traditionell g(n) genannt)

Grundlagen Blinde Suchverfahren Zusammenfassung

Knoten im Suchraum

1

23

45

6

7

81

23

45

6

7

8

Node
DEPTH = 6

STATE

PARENT-NODE

ACTION = right

PATH-COST = 6

Grundlagen Blinde Suchverfahren Zusammenfassung

Operationen für die Open-Liste

Operationen für die Open-Liste

Empty?(frontier): liefert true gdw. die Open-Liste leer ist

Pop(frontier): entfernt ein Element aus der Open-Liste
und liefert es zurück

Insert(element, frontier): fügt ein Element in die Open-Liste ein
und liefert die modifizierte Open-Liste
zurück

 unterschiedliche Implementierungen von Pop/Insert
ergeben unterschiedliche Suchstrategien

Grundlagen Blinde Suchverfahren Zusammenfassung

Allgemeiner Baumsuchalgorithmus 5

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
initialize the explored set to be empty
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCHmarked in bold italic are the additions needed to handle repeated states.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL -STATE, PATH-COST= 0
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
frontier← a FIFO queue withnode as the only element
explored←an empty set
loop do

if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the shallowest node infrontier */
addnode .STATE to explored
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
if child .STATE is not inexplored or frontier then

if problem .GOAL -TEST(child .STATE) then return SOLUTION(child)
frontier← INSERT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

allgemeines Muster für Baumsuchalgorithmen

konkrete Algorithmen oft wegen Effizienz anders
implementiert, aber konzeptuell (= Suchstrategie) identisch

Grundlagen Blinde Suchverfahren Zusammenfassung

Allgemeiner Graphensuchalgorithmus

5

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
initialize the explored set to be empty
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCHmarked in bold italic are the additions needed to handle repeated states.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL -STATE, PATH-COST= 0
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
frontier← a FIFO queue withnode as the only element
explored←an empty set
loop do

if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the shallowest node infrontier */
addnode .STATE to explored
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
if child .STATE is not inexplored or frontier then

if problem .GOAL -TEST(child .STATE) then return SOLUTION(child)
frontier← INSERT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

allgemeines Muster für Graphensuchalgorithmen

konkrete Algorithmen oft wegen Effizienz leicht anders
implementiert, aber konzeptuell (= Suchstrategie) identisch

Grundlagen Blinde Suchverfahren Zusammenfassung

Kriterien für Suchalgorithmen

Vollständigkeit: Findet der Algorithmus garantiert eine Lösung,
wenn eine existiert? (Semi-Vollständigkeit)
Terminiert er, wenn keine Lösung existiert?

Optimalität: Sind gefundene Lösungen garantiert optimal?

Zeitaufwand: Wie lange benötigt der Algorithmus, um eine
Lösung zu finden?
(gemessen in erzeugten Zuständen)

Platzaufwand: Wie viel Speicherplatz benötigt der Algorithmus,
um eine Lösung zu finden?
(gemessen in Zuständen)

oft verwendete Grössen:

b: Verzweigungsgrad (= max. Nachfolgerzahl eines Zustands)

d : Suchtiefe (Länge des längsten Pfads im Suchraum)

Grundlagen Blinde Suchverfahren Zusammenfassung

Blinde Suchverfahren

Grundlagen Blinde Suchverfahren Zusammenfassung

Blinde Suchverfahren

uninformierte oder blinde Suchverfahren

verwenden keine weiteren Informationen über Suchräume
ausser den definierenden Bestandteilen*

Breitensuche, uniforme Kostensuche, Tiefensuche

tiefenbeschränkte Suche, iterative Tiefensuche

bidirektionale Suche

* mit kleiner Ausnahme bei bidirektionaler Suche

Gegensatz: informierte oder heuristische Suchverfahren

Grundlagen Blinde Suchverfahren Zusammenfassung

Breitensuche

Knoten werden in Reihenfolge ihrer Erzeugung expandiert (FIFO).
 Open-Liste z. B. als verkettete Liste oder deque implementiert

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

sucht Zustandsraum ebenenweise ab

findet immer flachsten Zielzustand zuerst

offensichtlich vollständig

optimal, wenn alle Aktionen identische Kosten haben

englisch: breadth-first search

Grundlagen Blinde Suchverfahren Zusammenfassung

Breitensuche

Knoten werden in Reihenfolge ihrer Erzeugung expandiert (FIFO).
 Open-Liste z. B. als verkettete Liste oder deque implementiert

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

sucht Zustandsraum ebenenweise ab

findet immer flachsten Zielzustand zuerst

offensichtlich vollständig

optimal, wenn alle Aktionen identische Kosten haben

englisch: breadth-first search

Grundlagen Blinde Suchverfahren Zusammenfassung

Breitensuche

Knoten werden in Reihenfolge ihrer Erzeugung expandiert (FIFO).
 Open-Liste z. B. als verkettete Liste oder deque implementiert

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

sucht Zustandsraum ebenenweise ab

findet immer flachsten Zielzustand zuerst

offensichtlich vollständig

optimal, wenn alle Aktionen identische Kosten haben

englisch: breadth-first search

Grundlagen Blinde Suchverfahren Zusammenfassung

Breitensuche

Knoten werden in Reihenfolge ihrer Erzeugung expandiert (FIFO).
 Open-Liste z. B. als verkettete Liste oder deque implementiert

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

sucht Zustandsraum ebenenweise ab

findet immer flachsten Zielzustand zuerst

offensichtlich vollständig

optimal, wenn alle Aktionen identische Kosten haben

englisch: breadth-first search

Grundlagen Blinde Suchverfahren Zusammenfassung

Breitensuche

Knoten werden in Reihenfolge ihrer Erzeugung expandiert (FIFO).
 Open-Liste z. B. als verkettete Liste oder deque implementiert

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

sucht Zustandsraum ebenenweise ab

findet immer flachsten Zielzustand zuerst

offensichtlich vollständig

optimal, wenn alle Aktionen identische Kosten haben

englisch: breadth-first search

Grundlagen Blinde Suchverfahren Zusammenfassung

Breitensuche: Pseudo-Code

5

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
initialize the explored set to be empty
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCHmarked in bold italic are the additions needed to handle repeated states.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL -STATE, PATH-COST= 0
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
frontier← a FIFO queue withnode as the only element
explored←an empty set
loop do

if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the shallowest node infrontier */
addnode .STATE to explored
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
if child .STATE is not inexplored or frontier then

if problem .GOAL -TEST(child .STATE) then return SOLUTION(child)
frontier← INSERT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

Grundlagen Blinde Suchverfahren Zusammenfassung

Breitensuche: Aufwand

Satz (Zeitaufwand der Breitensuche)

Sei b der (maximale) Verzweigungsgrad und d die minimale
Lösungslänge im durchsuchten Zustandsraum. Gelte b ≥ 2.

Dann ist der Zeitaufwand der Breitensuche

1 + b + b2 + b3 + · · ·+ bd = O(bd)

Erinnerung: wir messen den Zeitaufwand als Zahl erzeugter Knoten

Es folgt direkt, dass (für b ≥ 2) auch der Platzaufwand
der Breitensuche O(bd) beträgt. (Warum?)

Grundlagen Blinde Suchverfahren Zusammenfassung

Breitensuche: Beispiel zum Aufwand

Beispiel: b = 10; 100’000 Knoten/Sekunde; 32 Bytes/Knoten:

d Knoten Zeit Speicher

3 1’111 0.01 s 35 KB

5 111’111 1 s 3.4 MB

7 107 2 min 339 MB

9 109 3 h 33 GB

11 1011 13 Tage 3.2 TB

13 1013 3.5 Jahre 323 TB

15 1015 350 Jahre 32 PB

Grundlagen Blinde Suchverfahren Zusammenfassung

Breitensuche: Diskussion

Unser Pseudo-Code für Breitensuche ist eine Graphensuche,
d. h. sie eliminiert Duplikate.

Warum ist das hier sinnvoller als Baumsuche?

Unser Pseudo-Code für Breitensuche führt den Zieltest anderswo
aus als der allgemeine Pseudo-Code für Graphensuche.

Warum ist das sinnvoll?

Grundlagen Blinde Suchverfahren Zusammenfassung

Breitensuche: Diskussion

Unser Pseudo-Code für Breitensuche ist eine Graphensuche,
d. h. sie eliminiert Duplikate.

Warum ist das hier sinnvoller als Baumsuche?

Unser Pseudo-Code für Breitensuche führt den Zieltest anderswo
aus als der allgemeine Pseudo-Code für Graphensuche.

Warum ist das sinnvoll?

Grundlagen Blinde Suchverfahren Zusammenfassung

Uniforme Kostensuche

alle Aktionen gleich teuer Breitensuche optimal

anderenfalls kann sie suboptimal sein siehe Beispiel

Abhilfe: uniforme Kostensuche (uniform cost search)

expandiert immer einen Knoten mit minimalen Pfadkosten
(n.Path-Cost bzw. g(n))

Implementierung: Prioritätswarteschlange (Heap)
für Open-Liste

Grundlagen Blinde Suchverfahren Zusammenfassung

Uniforme Kostensuche: Pseudo-Code

Uniforme Kostensuche (mit verzögerter Duplikateliminierung)

open := new min-heap ordered by g
open.insert(make-root-node(init()))
closed := ∅
while not open.empty():

n = open.pop-min()
if n.state /∈ closed:

closed := closed ∪ {n.state}
if is-goal(n.state):

return extract-solution(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make-node(n, a, s ′)
open.insert(n′)

return unsolvable

Grundlagen Blinde Suchverfahren Zusammenfassung

Uniforme Kostensuche: Eigenschaften

Eigenschaften der uniformen Kostensuche:

vollständig und optimal

identisch mit Dijkstra’s Algorithmus (für explizite Graphen)

Zieltest darf erst beim Expandieren geschehen! (Warum?)

Zeitaufwand hängt stark von Verteilung der Aktionskosten ab
(keine einfachen und genauen Abschätzungen)

Sei ε := mina∈A cost(a). Wenn ε > 0, optimale Lösungskosten
c∗ und Verzweigungsgrad b, dann Aufwand O(b1+bc

∗/εc).
(Warum?)
Oft sehr ungenaue obere Schranke.

Platzaufwand = Zeitaufwand

Grundlagen Blinde Suchverfahren Zusammenfassung

Tiefensuche

Zuletzt erzeugte Knoten werden zuerst expandiert (LIFO)
 tiefste Knoten zuerst (englisch: depth-first search)

Open-Liste als Stack implementiert

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Grundlagen Blinde Suchverfahren Zusammenfassung

Tiefensuche

Zuletzt erzeugte Knoten werden zuerst expandiert (LIFO)
 tiefste Knoten zuerst (englisch: depth-first search)

Open-Liste als Stack implementiert

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Grundlagen Blinde Suchverfahren Zusammenfassung

Tiefensuche

Zuletzt erzeugte Knoten werden zuerst expandiert (LIFO)
 tiefste Knoten zuerst (englisch: depth-first search)

Open-Liste als Stack implementiert

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Grundlagen Blinde Suchverfahren Zusammenfassung

Tiefensuche

Zuletzt erzeugte Knoten werden zuerst expandiert (LIFO)
 tiefste Knoten zuerst (englisch: depth-first search)

Open-Liste als Stack implementiert

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Grundlagen Blinde Suchverfahren Zusammenfassung

Tiefensuche: Eigenschaften

wird fast immer als Baumsuche implementiert
(warum, wird später deutlich)

nicht vollständig oder semi-vollständig, nicht optimal
(Warum?)

vollständig, wenn Zustandsraum azyklisch, z.B. Baum
(Constraint-Satisfaction-Probleme)

Implementierung:

üblich und effizient: Tiefensuche als rekursive Funktion

 nutze Stack der Programmiersprache/CPU für die Open-Liste

Pseudo-Code später (tiefenbeschränkte Suche)

Grundlagen Blinde Suchverfahren Zusammenfassung

Tiefensuche: Eigenschaften

wird fast immer als Baumsuche implementiert
(warum, wird später deutlich)

nicht vollständig oder semi-vollständig, nicht optimal
(Warum?)

vollständig, wenn Zustandsraum azyklisch, z.B. Baum
(Constraint-Satisfaction-Probleme)

Implementierung:

üblich und effizient: Tiefensuche als rekursive Funktion

 nutze Stack der Programmiersprache/CPU für die Open-Liste

Pseudo-Code später (tiefenbeschränkte Suche)

Grundlagen Blinde Suchverfahren Zusammenfassung

Tiefensuche: Aufwand

Zeitaufwand:

Wenn im Zustandsraum Pfade der Länge m existieren, kann
Tiefensuche O(bm) viele Knoten erzeugen, selbst wenn sehr
kurze Lösungen (z. B. Länge 1) existieren.

Umgekehrt kann im besten Fall eine Lösung der Länge l
mit nur O(bl) erzeugten Knoten gefunden werden.

Platzaufwand (als Baumsuche!):

muss nur Knoten entlang des Pfades von der Wurzel zum
gerade expandierten Knoten im Speicher halten
(
”
entlang“ = Knoten auf diesem Pfad und deren Kinder)

wenn m die maximale Tiefe ist, zu der die Suche vordringt, ist
Platzaufwand daher O(bm)

dieser niedrige Platzaufwand ist der Grund, warum
Tiefensuche trotz aller Nachteile interessant ist

Grundlagen Blinde Suchverfahren Zusammenfassung

Tiefensuche: Aufwand

Zeitaufwand:

Wenn im Zustandsraum Pfade der Länge m existieren, kann
Tiefensuche O(bm) viele Knoten erzeugen, selbst wenn sehr
kurze Lösungen (z. B. Länge 1) existieren.

Umgekehrt kann im besten Fall eine Lösung der Länge l
mit nur O(bl) erzeugten Knoten gefunden werden.

Platzaufwand (als Baumsuche!):

muss nur Knoten entlang des Pfades von der Wurzel zum
gerade expandierten Knoten im Speicher halten
(
”
entlang“ = Knoten auf diesem Pfad und deren Kinder)

wenn m die maximale Tiefe ist, zu der die Suche vordringt, ist
Platzaufwand daher O(bm)

dieser niedrige Platzaufwand ist der Grund, warum
Tiefensuche trotz aller Nachteile interessant ist

Grundlagen Blinde Suchverfahren Zusammenfassung

Tiefensuche: Aufwand

Zeitaufwand:

Wenn im Zustandsraum Pfade der Länge m existieren, kann
Tiefensuche O(bm) viele Knoten erzeugen, selbst wenn sehr
kurze Lösungen (z. B. Länge 1) existieren.

Umgekehrt kann im besten Fall eine Lösung der Länge l
mit nur O(bl) erzeugten Knoten gefunden werden.

Platzaufwand (als Baumsuche!):

muss nur Knoten entlang des Pfades von der Wurzel zum
gerade expandierten Knoten im Speicher halten
(
”
entlang“ = Knoten auf diesem Pfad und deren Kinder)

wenn m die maximale Tiefe ist, zu der die Suche vordringt, ist
Platzaufwand daher O(bm)

dieser niedrige Platzaufwand ist der Grund, warum
Tiefensuche trotz aller Nachteile interessant ist

Grundlagen Blinde Suchverfahren Zusammenfassung

Tiefensuche: Aufwand

Zeitaufwand:

Wenn im Zustandsraum Pfade der Länge m existieren, kann
Tiefensuche O(bm) viele Knoten erzeugen, selbst wenn sehr
kurze Lösungen (z. B. Länge 1) existieren.

Umgekehrt kann im besten Fall eine Lösung der Länge l
mit nur O(bl) erzeugten Knoten gefunden werden.

Platzaufwand (als Baumsuche!):

muss nur Knoten entlang des Pfades von der Wurzel zum
gerade expandierten Knoten im Speicher halten
(
”
entlang“ = Knoten auf diesem Pfad und deren Kinder)

wenn m die maximale Tiefe ist, zu der die Suche vordringt, ist
Platzaufwand daher O(bm)

dieser niedrige Platzaufwand ist der Grund, warum
Tiefensuche trotz aller Nachteile interessant ist

Grundlagen Blinde Suchverfahren Zusammenfassung

Tiefenbeschränkte Suche

Tiefenbeschränkte Suche (depth-limited search):

Tiefensuche, bei der Abschneiden des Suchpfads nach Tiefe n
erzwungen wird

das heisst: Knoten führen Tiefe d im Suchbaum mit,
und Knoten in Tiefe n werden nicht expandiert

 für sich allein nicht sehr nützlich, aber Bestandteil
nützlicher Algorithmen

Grundlagen Blinde Suchverfahren Zusammenfassung

Tiefenbeschränkte Suche: Pseudo-Code

6 Chapter 3. Solving Problems by Searching

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL -STATE, PATH-COST= 0
frontier← a priority queue ordered by PATH-COST, with node as the only element
explored←an empty set
loop do

if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the lowest-cost node infrontier */
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
addnode .STATE to explored
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
if child .STATE is not inexplored or frontier then

frontier← INSERT(child , frontier)
else if child .STATE is in frontier with higher PATH-COST then

replace thatfrontier node withchild

Figure 3.13 Uniform-cost search on a graph. The algorithm is identical to the general graph search
algorithm in Figure??, except for the use of a priority queue and the addition of an extra check in case
a shorter path to a frontier state is discovered. The data structure forfrontier needs to support efficient
membership testing, so it should combine the capabilities of a priority queue and a hash table.

function DEPTH-L IMITED -SEARCH(problem , limit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(problem .INITIAL -STATE),problem , limit)

function RECURSIVE-DLS(node,problem , limit) returns a solution, or failure/cutoff
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
else if limit = 0 then return cutoff
else

cutoff occurred?← false
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
result←RECURSIVE-DLS(child ,problem , limit − 1)
if result = cutoff then cutoff occurred?← true
else if result 6= failure then return result

if cutoff occurred? then return cutoff else return failure

Figure 3.16 A recursive implementation of depth-limited tree search.

Grundlagen Blinde Suchverfahren Zusammenfassung

Iterative Tiefensuche

Iterative Tiefensuche (iterative-deepening search)

Idee: wiederholte tiefenbeschränkter Suchen
mit wachsenden Tiefenschranken

klingt verschwenderisch (jede Iteration wiederholt die vorher
gemachte Arbeit), aber der Aufwand ist tatsächlich vertretbar

7

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
for depth = 0 to∞ do

result←DEPTH-L IMITED -SEARCH(problem ,depth)
if result 6= cutoff then return result

Figure 3.17 The iterative deepening search algorithm, which repeatedly applies depth-limited search
with increasing limits. It terminates when a solution is found or if the depth-limited search returns
failure, meaning that no solution exists.

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
return RBFS(problem , MAKE-NODE(problem .INITIAL -STATE),∞)

function RBFS(problem ,node, f limit) returns a solution, or failure and a newf -cost limit
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
successors← []
for each action in problem .ACTIONS(node .STATE) do

add CHILD -NODE(problem ,node ,action) into successors
if successors is emptythen return failure,∞
for each s in successors do /* updatef with value from previous search, if any */

s.f ←max(s.g + s.h, node .f))
loop do

best← the lowestf -value node insuccessors
if best .f > f limit then return failure, best .f
alternative← the second-lowestf -value amongsuccessors
result ,best .f←RBFS(problem ,best ,min(f limit, alternative))
if result 6= failure then return result

Figure 3.24 The algorithm for recursive best-first search.

Grundlagen Blinde Suchverfahren Zusammenfassung

Iterative Tiefensuche: Eigenschaften

Kombiniert Vorteile von Breiten- und Tiefensuche:

(fast) wie Breitensuche: semi-vollständig

wie Breitensuche: bei einheitlichen Kosten optimal

wie Tiefensuche: Platzbedarf nur entlang eines Pfades
 Platzaufwand O(bd), wobei d minimale Lösungslänge

Zeitbedarf kaum höher als Breitensuche (siehe später)

Grundlagen Blinde Suchverfahren Zusammenfassung

Iterative Tiefensuche: Beispiel

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Grundlagen Blinde Suchverfahren Zusammenfassung

Iterative Tiefensuche: Beispiel

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Grundlagen Blinde Suchverfahren Zusammenfassung

Iterative Tiefensuche: Beispiel

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Grundlagen Blinde Suchverfahren Zusammenfassung

Iterative Tiefensuche: Beispiel

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Grundlagen Blinde Suchverfahren Zusammenfassung

Iterative Tiefensuche: Analyse

Zeitaufwand (erzeugte Zustände):

Breitensuche 1 + b + b2 + · · ·+ bd−1 + bd

Iter. Tiefensuche (d + 1) + db + (d − 1)b2 + · · ·+ 2bd−1 + 1bd

Beispiel: b = 10, d = 5

Breitensuche 1 + 10 + 100 + 1000 + 10000 + 100000

= 111111

Iter. Tiefensuche 6 + 50 + 400 + 3000 + 20000 + 100000

= 123456

Für b = 10 werden nur 11% mehr Knoten erzeugt als bei
Breitensuche.

Grundlagen Blinde Suchverfahren Zusammenfassung

Iterative Tiefensuche: Analyse (formal)

Satz (Zeitaufwand der iterativen Tiefensuche)

Sei b der (maximale) Verzweigungsgrad und d die minimale
Lösungslänge im durchsuchten Zustandsraum. Gelte b ≥ 2.

Dann ist der Zeitaufwand der iterativen Tiefensuche

(d + 1) + db + (d − 1)b2 + (d − 2)b3 + · · ·+ 1bd = O(bd)

und der Platzaufwand
O(bd)

Einschätzung

 Iterative Tiefensuche ist im Allgemeinen die Methode der Wahl,
wenn Baumsuche angemessen und Lösungstiefe unbekannt ist.

Grundlagen Blinde Suchverfahren Zusammenfassung

Bidirektionale Suche

GoalStart

wenn nur ein Zielzustand und Zustandsraum symmetrisch
 Suche in Zeit O(2 · bdd/2e) = O(bdd/2e) möglich

Beispiel: b = 10, d = 6 statt 1’111’111 Knoten nur 2’222!

Grundlagen Blinde Suchverfahren Zusammenfassung

Bidirektionale Suche: Schwierigkeiten

Aktionen nicht immer symmetrisch,
daher Berechnung von Vorgängern für Rückwärtssuche
schwierig

in vielen Fällen sehr viele mögliche Zielzustände,
die schwer charakterisierbar sind

mindestens eine Suchrichtung muss platzaufwändigen
Algorithmus (z. B. Breitensuche) verwenden

Kombination mit informierten Suchverfahren
(nächstes Kapitel) schwierig

Grundlagen Blinde Suchverfahren Zusammenfassung

Zusammenfassung

Grundlagen Blinde Suchverfahren Zusammenfassung

Vergleich der Suchverfahren

Vollständigkeit, Optimalität, Zeitaufwand, Platzaufwand

Kriterium Breiten- Uniforme Tiefen- tiefen- iter. Bidirek-

Suche Kosten Suche beschr. Tiefens. tional

vollständig? Ja Ja Nein Nein Semi Ja

optimal? Ja* Ja Nein Nein Ja* Ja*,**

Zeit O(bd) O(b1+bc
∗/εc) O(bm) O(bl) O(bd) O(bd/2)

Platz O(bd) O(b1+bc
∗/εc) O(bm) O(bl) O(bd) O(bd/2)

b ≥ 2 Verzweigungsgrad
d minimale Lösungstiefe
m maximale durchsuchte Tiefe
l Tiefenlimit

c∗ optimale Lösungskosten
ε > 0 minimale Aktionskosten

Anmerkungen:
* nur bei uniformen Aktionskosten
** bei Verwendung von Breitensuchen;
Annahmen: nur ein Zielzustand;
symmetrisch

	Grundlagen
	Blinde Suchverfahren
	Zusammenfassung

