Grundlagen der Kiinstlichen Intelligenz

4. Suchalgorithmen: Grundlagen & blinde Verfahren

Malte Helmert

Universitat Basel

11. Marz 2013

Grundlagen

Grundlagen
0®00000000

Suchalgorithmen

Beginne beim Anfangszustand und expandiere in jedem Schritt
einen Zustand durch Erzeugen seiner Nachfolger
~» Suchbaum bzw. Suchraum

(a) initial state (3,3,1)

Grundlagen
0®00000000

Suchalgorithmen

Beginne beim Anfangszustand und expandiere in jedem Schritt
einen Zustand durch Erzeugen seiner Nachfolger
~» Suchbaum bzw. Suchraum

(a) initial state (3,3,1)
(b) after expansion (3,3,1)
of (3,3,1)

(2370 (3.2,0) (2,2,0) (1370)(3,1,0)

Grundlagen
0®00000000

Suchalgorithmen

Beginne beim Anfangszustand und expandiere in jedem Schritt
einen Zustand durch Erzeugen seiner Nachfolger
~» Suchbaum bzw. Suchraum

(a) initial state (3,3,1)
(b) after expansion (3,3,1)
of (3,3,1)

(2370 (3.2,0) (2,2,0) (1370)(3,1,0)

(c) after expansion (3,3,1)
of (3,2,0)

(2:370) (3,2,0) (2,2,0) (1370)(3,1,0)

(3,3,1)

Grundlagen
00®0000000

Begriffe

@ Suchknoten
reprasentiert in der Suche erreichten Zustand
und zugehorige Informationen

@ Knotenexpansion

Erzeugen der Nachfolgerknoten eines Knotens

durch Anwendung aller dort anwendbaren Aktionen
@ Open-Liste oder Frontier

Menge der Knoten, die Kandidaten fiir die Expansion sind
o Closed-Liste

Menge der bereits expandierten Knoten

@ Suchstrategie
bestimmt, welcher Knoten als nichstes expandiert wird

Grundlagen
000®000000

Baumsuche vs. Graphensuche

Baumsuche:

@ Suchknoten als Baum organisiert (Suchbaum)
@ jeder Knoten entspricht einem Pfad vom Anfangszustand
@ Duplikate (mehrere Knoten fiir denselben Zustand) moglich

@ Suchbaum kann endlos tief verzweigen (,,im Kreis laufen")
Graphensuche:
@ Suchknoten als gerichteter Graph organisiert (Suchraum)

@ Duplikate vermeiden: zu jedem Zustand max. ein Knoten

Grundlagen
0000®00000

Implementierung des Suchraums

Datenstruktur fiir jeden Suchknoten n

n.State: Zustand, dem der Knoten entspricht
n.Parent: Suchknoten, der diesen Knoten erzeugt hat
n.Action: Aktion, durch die wir vom Parent zu n gelangen

n.Path-Cost: Kosten des Pfades vom Anfangszustand zu n.State,
der sich durch Verfolgen der Parent-Verweise ergibt
(traditionell g(n) genannt)

Grundlagen
00000e0000

Knoten im Suchraum

PARENT-NODE

ACTION =right
DEPTH =6
PATH-COST =6

=]
o - L=
)=

Grundlagen
000000e000

Operationen fiir die Open-Liste

Operationen fiir die Open-Liste
Empty?(frontier): liefert true gdw. die Open-Liste leer ist

Pop(frontier): entfernt ein Element aus der Open-Liste
und liefert es zuriick
Insert(element, frontier): fiigt ein Element in die Open-Liste ein
und liefert die modifizierte Open-Liste
zuriick

~~ unterschiedliche Implementierungen von Pop/Insert
ergeben unterschiedliche Suchstrategien

Grundlagen
0000000e00

Allgemeiner Baumsuchalgorithmus

function TREE-SEARCH(problem) returnsa solution, or failure
initialize the frontier using the initial state gfroblem
loop do
if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal staken return the corresponding solution
expand the chosen node, adding the resulting nodes to thigeiro

@ allgemeines Muster fiir Baumsuchalgorithmen

@ konkrete Algorithmen oft wegen Effizienz anders
implementiert, aber konzeptuell (= Suchstrategie) identisch

Grundlagen
0000000080

Allgemeiner Graphensuchalgorithmus

function GRAPH-SEARCH(problem) returnsa solution, or failure

initialize the frontier using the initial state @froblem

initialize the explored set to be empty

loop do
if the frontier is emptyhen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal staken return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to thigefro

only if not in thefrontier or explored set

@ allgemeines Muster fiir Graphensuchalgorithmen

@ konkrete Algorithmen oft wegen Effizienz leicht anders
implementiert, aber konzeptuell (= Suchstrategie) identisch

Grundlagen
©000000000e

Kriterien fiir Suchalgorithmen

Vollstandigkeit: Findet der Algorithmus garantiert eine Losung,
wenn eine existiert? (Semi-Vollstandigkeit)
Terminiert er, wenn keine Lésung existiert?

Optimalitdt: Sind gefundene Losungen garantiert optimal?

Zeitaufwand: Wie lange bendtigt der Algorithmus, um eine
Losung zu finden?
(gemessen in erzeugten Zustanden)

Platzaufwand: Wie viel Speicherplatz bendtigt der Algorithmus,
um eine Losung zu finden?
(gemessen in Zustanden)

oft verwendete Grossen:
e b: Verzweigungsgrad (= max. Nachfolgerzahl eines Zustands)
@ d: Suchtiefe (Lange des langsten Pfads im Suchraum)

Blinde Suchverfahren

Blinde Suchverfahren
0®00000000000000000000

Blinde Suchverfahren

uninformierte oder blinde Suchverfahren

verwenden keine weiteren Informationen tber Suchraume
ausser den definierenden Bestandteilen*

@ Breitensuche, uniforme Kostensuche, Tiefensuche
o tiefenbeschrankte Suche, iterative Tiefensuche

@ bidirektionale Suche

* mit kleiner Ausnahme bei bidirektionaler Suche

Gegensatz: informierte oder heuristische Suchverfahren

Blinde Suchverfahren
00®0000000000000000000

Breitensuche

Knoten werden in Reihenfolge ihrer Erzeugung expandiert (FIFO).
~» Open-Liste z. B. als verkettete Liste oder deque implementiert

>®

Blinde Suchverfahren
00®0000000000000000000

Breitensuche

Knoten werden in Reihenfolge ihrer Erzeugung expandiert (FIFO).
~» Open-Liste z. B. als verkettete Liste oder deque implementiert

>®

Blinde Suchverfahren
00®0000000000000000000

Breitensuche

Knoten werden in Reihenfolge ihrer Erzeugung expandiert (FIFO).
~» Open-Liste z. B. als verkettete Liste oder deque implementiert

>®

© ©®

Blinde Suchverfahren
00®0000000000000000000

Breitensuche

Knoten werden in Reihenfolge ihrer Erzeugung expandiert (FIFO).
~» Open-Liste z. B. als verkettete Liste oder deque implementiert

>®

© ©® PO ® ® ©

Blinde Suchverfahren
00®0000000000000000000

Breitensuche

Knoten werden in Reihenfolge ihrer Erzeugung expandiert (FIFO).
~» Open-Liste z. B. als verkettete Liste oder deque implementiert

>®

© ©® PO ® ® ©

@ sucht Zustandsraum ebenenweise ab
o findet immer flachsten Zielzustand zuerst
e offensichtlich vollstandig

@ optimal, wenn alle Aktionen identische Kosten haben

englisch: breadth-first search

Blinde Suchverfahren
000®000000000000000000

Breitensuche: Pseudo-Code

function BREADTH-FIRST-SEARCH problem) returnsa solution, or failure

node < a node with SATE = problem.INITIAL -STATE, PATH-COST=0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier + a FIFO queue witlode as the only element
ezplored <— an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) [* chooses the shallowest nodefiontier */
addnode.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem, node, action)
if child.STATE is not in explored or frontier then
if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier < INSERT(child, frontier)

Blinde Suchverfahren
0000®00000000000000000

Breitensuche: Aufwand

Satz (Zeitaufwand der Breitensuche)

Sei b der (maximale) Verzweigungsgrad und d die minimale
Lésungslange im durchsuchten Zustandsraum. Gelte b > 2.

Dann ist der Zeitaufwand der Breitensuche

1+b+ b2+ b2+ + b = 0(b%)

4

Erinnerung: wir messen den Zeitaufwand als Zahl erzeugter Knoten

Es folgt direkt, dass (fiir b > 2) auch der Platzaufwand
der Breitensuche O(b9) betragt. (Warum?)

Blinde Suchverfahren
00000®0000000000000000

Breitensuche: Beispiel zum Aufwand

Beispiel: b= 10; 100’000 Knoten/Sekunde; 32 Bytes/Knoten:

d | Knoten Zeit Speicher
3 1'111 | 0.01 s 35 KB
5| 111'111 ls 3.4 MB
7 107 2 min 339 MB
9 10° 3h 33 GB
11 101 | 13 Tage | 3.2 TB
13 103 | 3.5 Jahre | 323 TB
15 10* | 350 Jahre | 32 PB

Blinde Suchverfahren
000000e000000000000000

Breitensuche: Diskussion

Unser Pseudo-Code fiir Breitensuche ist eine Graphensuche,
d. h. sie eliminiert Duplikate.

Warum ist das hier sinnvoller als Baumsuche?

Blinde Suchverfahren
000000e000000000000000

Breitensuche: Diskussion

Unser Pseudo-Code fiir Breitensuche ist eine Graphensuche,
d. h. sie eliminiert Duplikate.

Warum ist das hier sinnvoller als Baumsuche?

Unser Pseudo-Code fiir Breitensuche fiihrt den Zieltest anderswo
aus als der allgemeine Pseudo-Code fiir Graphensuche.

Warum ist das sinnvoll?

Blinde Suchverfahren
0000000e00000000000000

Uniforme Kostensuche

@ alle Aktionen gleich teuer ~» Breitensuche optimal

@ anderenfalls kann sie suboptimal sein ~» siehe Beispiel

Sibiu 0 Fagaras

Bucharest

Abhilfe: uniforme Kostensuche (uniform cost search)

@ expandiert immer einen Knoten mit minimalen Pfadkosten
(n.Path-Cost bzw. g(n))

@ Implementierung: Prioritatswarteschlange (Heap)
fiir Open-Liste

Blinde Suchverfahren Zusammenfassung
00000000e0000000000000

Uniforme Kostensuche: Pseudo-Code

Uniforme Kostensuche (mit verzégerter Duplikateliminierung)

open := new min-heap ordered by g
open.insert(make-root-node(init()))
closed := ()
while not open.empty():
n = open.pop-min()
if n.state ¢ closed:
closed := closed U {n.state}
if is-goal(n.state):
return extract-solution(n)
for each (a,s’) € succ(n.state):
if h(s’) < oo:
n’ := make-node(n, a, s")
open.insert(n’)

return unsolvable

Blinde Suchverfahren
000000000e000000000000

Uniforme Kostensuche: Eigenschaften

Eigenschaften der uniformen Kostensuche:
@ vollstandig und optimal
@ identisch mit Dijkstra’s Algorithmus (fiir explizite Graphen)
@ Zieltest darf erst beim Expandieren geschehen! (Warum?)

o Zeitaufwand hangt stark von Verteilung der Aktionskosten ab
(keine einfachen und genauen Abschitzungen)
o Sei € := min,ca cost(a). Wenn e > 0, optimale Lésungskosten
c* und Verzweigungsgrad b, dann Aufwand O(b'*Le/<l).
(Warum?)
o Oft sehr ungenaue obere Schranke.

@ Platzaufwand = Zeitaufwand

Blinde Suchverfahren
0000000000e00000000000

Tiefensuche

Zuletzt erzeugte Knoten werden zuerst expandiert (LIFO)
~ tiefste Knoten zuerst (englisch: depth-first search)

@ Open-Liste als Stack implementiert

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

© e e

Blinde Suchverfahren
0000000000e00000000000

Tiefensuche

Zuletzt erzeugte Knoten werden zuerst expandiert (LIFO)
~ tiefste Knoten zuerst (englisch: depth-first search)

@ Open-Liste als Stack implementiert

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

S

Blinde Suchverfahren
0000000000e00000000000

Tiefensuche

Zuletzt erzeugte Knoten werden zuerst expandiert (LIFO)
~ tiefste Knoten zuerst (englisch: depth-first search)

@ Open-Liste als Stack implementiert
Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

*®

Py
o

L
St

Blinde Suchverfahren
0000000000e00000000000

Tiefensuche

Zuletzt erzeugte Knoten werden zuerst expandiert (LIFO)
~ tiefste Knoten zuerst (englisch: depth-first search)

@ Open-Liste als Stack implementiert

Beispiel: (Annahme: Knoten in Tiefe 3 haben keine Nachfolger)

DD
293004 9
DD

Blinde Suchverfahren
00000000000e0000000000

Tiefensuche: Eigenschaften

@ wird fast immer als Baumsuche implementiert
(warum, wird spater deutlich)

@ nicht vollstindig oder semi-vollstiandig, nicht optimal
(Warum?)

@ vollstindig, wenn Zustandsraum azyklisch, z.B. Baum
(~ Constraint-Satisfaction-Probleme)

Blinde Suchverfahren
00000000000e0000000000

Tiefensuche: Eigenschaften

@ wird fast immer als Baumsuche implementiert
(warum, wird spater deutlich)

@ nicht vollstdndig oder semi-vollstandig, nicht optimal
(Warum?)

@ vollstindig, wenn Zustandsraum azyklisch, z.B. Baum
(~ Constraint-Satisfaction-Probleme)

Implementierung:
@ (blich und effizient: Tiefensuche als rekursive Funktion
~~ nutze Stack der Programmiersprache/CPU fiir die Open-Liste

@ Pseudo-Code spater (~~ tiefenbeschrankte Suche)

Blinde Suchverfahren
000000000000e000000000

Tiefensuche: Aufwand

Zeitaufwand:

@ Wenn im Zustandsraum Pfade der Ldnge m existieren, kann
Tiefensuche O(b™) viele Knoten erzeugen, selbst wenn sehr
kurze Lésungen (z. B. Lange 1) existieren.

@ Umgekehrt kann im besten Fall eine Lésung der Lange /
mit nur O(bl) erzeugten Knoten gefunden werden.

Blinde Suchverfahren
000000000000e000000000

Tiefensuche: Aufwand

Zeitaufwand:

@ Wenn im Zustandsraum Pfade der Ldnge m existieren, kann
Tiefensuche O(b™) viele Knoten erzeugen, selbst wenn sehr
kurze Lésungen (z. B. Lange 1) existieren.

@ Umgekehrt kann im besten Fall eine Lésung der Lange /
mit nur O(bl) erzeugten Knoten gefunden werden.

Platzaufwand (als Baumsuche!):
@ muss nur Knoten entlang des Pfades von der Wurzel zum
gerade expandierten Knoten im Speicher halten
(,entlang” = Knoten auf diesem Pfad und deren Kinder)

Blinde Suchverfahren
000000000000e000000000

Tiefensuche: Aufwand

Zeitaufwand:
@ Wenn im Zustandsraum Pfade der Ldnge m existieren, kann
Tiefensuche O(b™) viele Knoten erzeugen, selbst wenn sehr
kurze Lésungen (z. B. Lange 1) existieren.

@ Umgekehrt kann im besten Fall eine Lésung der Lange /
mit nur O(bl) erzeugten Knoten gefunden werden.

Platzaufwand (als Baumsuche!):
@ muss nur Knoten entlang des Pfades von der Wurzel zum
gerade expandierten Knoten im Speicher halten
(,entlang” = Knoten auf diesem Pfad und deren Kinder)
@ wenn m die maximale Tiefe ist, zu der die Suche vordringt, ist
Platzaufwand daher O(bm)

Blinde Suchverfahren
000000000000e000000000

Tiefensuche: Aufwand

Zeitaufwand:

@ Wenn im Zustandsraum Pfade der Ldnge m existieren, kann
Tiefensuche O(b™) viele Knoten erzeugen, selbst wenn sehr
kurze Lésungen (z. B. Lange 1) existieren.

@ Umgekehrt kann im besten Fall eine Lésung der Lange /
mit nur O(bl) erzeugten Knoten gefunden werden.

Platzaufwand (als Baumsuche!):
@ muss nur Knoten entlang des Pfades von der Wurzel zum
gerade expandierten Knoten im Speicher halten
(,entlang” = Knoten auf diesem Pfad und deren Kinder)

@ wenn m die maximale Tiefe ist, zu der die Suche vordringt, ist
Platzaufwand daher O(bm)

o dieser niedrige Platzaufwand ist der Grund, warum
Tiefensuche trotz aller Nachteile interessant ist

Blinde Suchverfahren
0000000000000e00000000

Tiefenbeschrankte Suche

Tiefenbeschrankte Suche (depth-limited search):

o Tiefensuche, bei der Abschneiden des Suchpfads nach Tiefe n
erzwungen wird

@ das heisst: Knoten fiihren Tiefe d im Suchbaum mit,
und Knoten in Tiefe n werden nicht expandiert

~ fiir sich allein nicht sehr niitzlich, aber Bestandteil
niitzlicher Algorithmen

Blinde Suchverfahren
00000000000000e0000000

Tiefenbeschrankte Suche: Pseudo-Code

function DEPTH-LIMITED -SEARCH(problem, limit) returnsa solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(problem.INITIAL -STATE), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returnsa solution, or failure/cutoff
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
elseif limit = Othen return cutoff
ese
cutoff-occurred? < false
for each action in problem.ACTIONYnode.STATE) do
child <— CHILD-NODE(problem, node, action)
result < RECURSIVE-DLS(child, problem, limit — 1)
if result = cutoff then cutoff-occurred? < true
elseif result # failure then return result
if cutoff-occurred? then return cutoff elsereturn failure

Blinde Suchverfahren
000000000000000e000000

Iterative Tiefensuche

Iterative Tiefensuche (iterative-deepening search)

@ |dee: wiederholte tiefenbeschrankter Suchen
mit wachsenden Tiefenschranken

o klingt verschwenderisch (jede lteration wiederholt die vorher
gemachte Arbeit), aber der Aufwand ist tatsichlich vertretbar

function ITERATIVE-DEEPENING SEARCH(problem) returnsa solution, or failure
for depth = 0to co do
result < DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

Blinde Suchverfahren
0000000000000000e00000

Iterative Tiefensuche: Eigenschaften

Kombiniert Vorteile von Breiten- und Tiefensuche:
o (fast) wie Breitensuche: semi-vollstandig
@ wie Breitensuche: bei einheitlichen Kosten optimal

@ wie Tiefensuche: Platzbedarf nur entlang eines Pfades
~~ Platzaufwand O(bd), wobei d minimale Lésungslange

o Zeitbedarf kaum hoher als Breitensuche (siehe spater)

Blinde Suchverfahren
00000000000000000e0000

Iterative Tiefensuche: Beispiel

Limit=0 *® [

Blinde Suchverfahren
00000000000000000e0000

Iterative Tiefensuche: Beispiel

Limit=0 *Q []

Iterative Tiefensuche: Beispiel

e
£ A
L

a0 o elod)
T

Blinde Suchverfahren
000000000000000000e000

Iterative Tiefensuche: Analyse

Zeitaufwand (erzeugte Zustande):

Breitensuche 14+ b4+ p2 4. L pd=1 L pd
Iter. Tiefensuche | (d + 1)+ db+ (d — 1)b? + --- 4+ 2b971 + 1b¢

Beispiel: b=10,d =5

Breitensuche 1+ 10+ 100 + 1000 + 10000 + 100000
= 111111

Iter. Tiefensuche | 6 + 50 + 400 + 3000 + 20000 + 100000
= 123456

Fir b = 10 werden nur 11% mehr Knoten erzeugt als bei
Breitensuche.

Blinde Suchverfahren Zusammenfassung
000000000000 0000000e00 00

lterative Tiefensuche: Analyse (formal)

Satz (Zeitaufwand der iterativen Tiefensuche)

Sei b der (maximale) Verzweigungsgrad und d die minimale
Ldsungslange im durchsuchten Zustandsraum. Gelte b > 2.

Dann ist der Zeitaufwand der iterativen Tiefensuche
(d+1)+db+(d—1)b>+(d —2)b> +--- +1b7 = O(b9)

und der Platzaufwand

0(bd)

Einschatzung

~ Iterative Tiefensuche ist im Allgemeinen die Methode der Wahl,
wenn Baumsuche angemessen und Losungstiefe unbekannt ist.

Blinde Suchverfahren
00000000000000000000e0

Bidirektionale Suche

Wl SN

S,

eSS Eey

wenn nur ein Zielzustand und Zustandsraum symmetrisch
~ Suche in Zeit O(2 - bl9/21) = O(b!9/?1) moglich

Beispiel: b =10, d = 6 ~» statt 1'111'111 Knoten nur 2'222!

Blinde Suchverfahren
000000000000000000000e

Bidirektionale Suche: Schwierigkeiten

@ Aktionen nicht immer symmetrisch,
daher Berechnung von Vorgangern fiir Riickwartssuche
schwierig

@ in vielen Fallen sehr viele mogliche Zielzustande,
die schwer charakterisierbar sind

@ mindestens eine Suchrichtung muss platzaufwandigen
Algorithmus (z. B. Breitensuche) verwenden

o Kombination mit informierten Suchverfahren
(nachstes Kapitel) schwierig

Zusammenfassung

Zusammenfassung
oe

Vergleich der Suchverfahren

Vollstandigkeit, Optimalitat, Zeitaufwand, Platzaufwand J
Kriterium Breiten- Uniforme Tiefen- tiefen- iter. Bidirek-
Suche Kosten Suche beschr. Tiefens. tional

vollstindig? Ja Ja Nein Nein Semi Ja
optimal? Ja* Ja Nein Nein Ja* Jat "
Zeit o(b?) O(btLle™/ely o(b™) Oo(b) oY) O(b?/?)
Platz O(b?) O(bFl™/ely O(bm) O(bl) O(bd) O(b%/2)
b>2 Verzweigungsgrad fnmerkungen:

d minimale L3sungstiefe nur bei uniformen Aktionskosten

m maximale durchsuchte Tiefe ** bei Verwendung von Breitensuchen;

| Tiefenlimit Annahmen: nur ein Zielzustand;

c* optimale Lésungskosten symmetrisch

e >0 minimale Aktionskosten

	Grundlagen
	Blinde Suchverfahren
	Zusammenfassung

